Archive for the ‘Química’ Category

Teoria com premio Nobel sobre transferencia de eletrons em quimica, “parece” que foi provada errada pela Universidade de Coimbra.

domingo, dezembro 2nd, 2018

xxxxx

The end of the theory of a Nobel Prize in chemistry?

See more at http://www.pravdareport.com/science/mysteries/27-07-2018/141300-nobel_theory-0/

No doubt about it, the scientific paper just published in Nature Communications’s well-respected Nature group, proves that the theory developed in 1956 by Rudolph Arthur Marcus, which earned him the Nobel Prize for Chemistry in 1992, is wrong.
At stake is the reorganization of molecules required for the transfer of electrons. For this type of chemical reactions to occur, Marcus’s theory predicts that this reorganization has to be mainly done in solvents, but the study now published says that it is not so, showing that the key to electron transfer is in the reagents. (Leia mais no link para o artigo no PRAVDA )

Quimica da Vida: Pesquisar Hormonios

quarta-feira, novembro 29th, 2017

xxxx

Ainda nao localizei como e onde os hormonios estao previstos na formula da Matrix/DNA. Aqui esta’ mais uma dica:

Foto de BIO+.

Evolucao Quimica, apenas por si mesma, Criou a Vida?

segunda-feira, outubro 16th, 2017

xxxx

https://www.youtube.com/watch?v=mRzxTzKIsp8

What is Chemical Evolution?

Bem,… ja que os biologos nao encontraram uma maneira de explicar a procedencia das complexas propriedades vitais, o pensamento filosofico materialista se volta para a quimica, e nela acredita piamente como suficiente para fazer a vida acontecer onde ela nao existia antes.

Quando confrontamos esta teoria com a Matrix/DNA Theory, a primeira coisa que salta aos olhos e’ o erro crasso na mencao de “sistemas”. Confundem processos ( que sao meras relacoes entre duas ou mais partes de um Sistema, sem nunca completer o Sistema), com sistemas, do qual a formula da Matrix/DNA e’ a anatomia completa. Nos acidos graxos (fat acid?), por exemplo, apenas 3 atomos existem, quando para montar um Sistema de atomos completo sao necessarios ao menos um atomo de carbon ou entao seis atomos diferentes. Observamos que quando os 3 atomos se ligam formando um processo ciclico, a evolucao se paraliza ai, ( porque torna-se um Sistema fechado?), sendo que na continuacao ocorre apenas a repeticao do mesmo padrao, fazendo assim que o conjunto dos 3 atomos se tornem o building block da molecula total.

Nao sei onde e como a quimica mostra a evolucao de moleculas ate tornar-se um Sistema completo de maneira que o Sistema adquira o “sopro” vital, ou seja acionado como quando ligamos o plug de um aparelho numa tomada. O fenomeno quimico que conheco que mais se aproxima de um Sistema e’ o ciclo de Krebs, o qual ainda devo estudar mais procurando sua relacao com um Sistema de fato. Fica registrado aqui este video para dar continuidade `a pesquisa.

Esta controversia entre os teoricos da evolucao quimica e a teoria da Matrix/DNA repete a famosa discussao entre Louis Pasteur ( representado aqui pela Matrix/DNA) e o quimico positivista Lwduig ( esta certo o nome?). Lwduig acreditava em geracao espontaneade vida emergindo da quimica e Louis Pasteur replicava que a vida emergia da quimica produzida por um ” principio vital”. Pasteur ganhou na ocasiao com um experimento em que, fechando o frasco que contem os elementos quimicos a vida nao se produziu, alegando entao que o principio ativo estaria no ar.

Mas os quimicos positivistas nao se conformaram e continuram a espremer a quimica para cptar quando ela dava inicio `a vida. Jun taram tantas evidencias e, apesar de nao terem ain da as provas, voltaram como a teoria preferida dos academicos, porque afinal, o principio vital permaneceu numa aura fantasmagorica mais parecendo ser inexistente.

Bem,… a debilidade do argumento de Pasteur e’ que ela tambem nao tinha a menor ideia do que seria este principio vital, apenas sua fe’ religiosa mantem seus camaradas esperando que Deus o revele. Ninguem faz ideia do que seja a forsa que liga um Sistema e o faz viver.

Apenas a Teoria da Matrix surgiu com uma sugestao racional e um modelo teorico porem cientificamente testavel, do que seria este principio vital.

xxxx

Na secao “read more” tem uma lista de links para assuntos relacionados:

Have you ever wondered how life first got started on Earth? So do scientists! Though the question has not yet been fully answered, a careful study of Chemical Evolution is beginning to shed light on this mystery. In this film you will learn what Chemical Evolution is, how it works, and how it is different from Biological Evolution. This animation was paid for by the Center for Chemical Evolution, the National Science Foundation, and NASA!

For an overview of research that has been done on abiotic fatty-acid membrane formation, check out this paper by Dr. Pierre-Alain Monnard and Stated Clearly’s science advisor Dr. David W. Deamer. http://onlinelibrary.wiley.com/doi/10…

Read about the solubility of fatty-acids in warm water. It is this solubility of fatty acids which allows natural selection to sort them out of the mess they are typically produced in during abiotic synthesis. http://www.tandfonline.com/doi/pdf/10…

Learn of the bio-molecules discovered on meteorites. These biomolecules were not produced by living creatures, instead, they were created abiotically in a way similar to how we think the first biomolecules formed on Earth! http://cshperspectives.cshlp.org/cont…

Learn of research done by the Center For Chemical Evolution on a possible precursor to modern genes! http://news.sciencemag.org/2013/02/se…

Check out more of the work done by Center for Chemical Evolution: http://centerforchemicalevolution.com/

Visit the Stated Clearly website for more on genetics, evolution, and the origin of life: http://statedclearly.com/

A Evolução Biológica foi um desenvolvimento da Evolução da Química?

domingo, setembro 3rd, 2017

xxxx

Obtido em:

https://www.youtube.com/watch?v=mRzxTzKIsp8

What is Chemical Evolution?

 

A evolução química pode, por si só, construir complexas moléculas e até membranas de fatty acids, chegando inclusive ao RNA. Mas para chegar a química orgânica, ou iniciar a evolução biológica é preciso antes conseguir que alguma destas moléculas se reproduzam por si só. E isto ainda não esta’ claro para a Ciência Moderna como acontece.

Então eles estão pensando mais em que significa “reprodução” e uma das palavras que lhes veio `a mente é “repetição”, ou “replicação”. Ora, repetição é um processo muito mais simples que a complexa reprodução, então reprodução pode ter começado por algum processo de repetição. E assim eles vão no estado do mundo antes das origens da vida procurar o que existia que se repetia. Encontram os ciclos repetitivos, como ciclo do Co2, o fato de que nos astros ocorrem movimentos repetitivos como o aquecimento do dia e o esfriamento da noite, as repetitivas erupções dos vulcões, o levantamento e abaixamento das ondas do mar, etc. Estas repetições mexem com as coisas inertes repetidamente e repetitivamente produzem, ou dão nascimento a novas moléculas e sistemas químicos. E daqui vão para o evento onde se formaram as primeiras membranas de fatty acids, como elas mantem unidades de fatty acids dentro delas oferecendo novo e melhor ambiente para elas evoluírem. E daqui pulam para a crença de que reprodução aconteceu de alguma maneira por ai, sem precisar de maior explicação, Tendo a causa principal da vida em mãos – que é a auto-reprodução – eles saltam para a crenca de que a química por produziu a Vida.

Para mim, tendo a Matrix/DNA Theory em mãos e observando seus modelos teóricos, fico com a impressão que os cientistas são tímidos quando se defrontam com o espaço sideral. Pois fizeram uma rápida e curta incursão neste espaço e retornaram correndo. Assim ficam sem conhecer por completo o que são os sistemas que criaram a Terra, a química, e aos quais estas coisas pertencem. Como eu fui mais longe e fiquei mais tempo por la’ procurando, encontrei o mecanismo da auto-reciclagem dos sistemas astronômicos. Ora, auto-reciclagem é repetição e de uma certa maneira, reprodução, inclusive, na auto-reciclagem podem ocorrer mudanças, que geram variações, enquanto que na mera repetição isto não pode acontecer porque então não seria repetição..

Se os meus modelos astronômicos estiverem corretos, a auto-reciclagem dos building blocks das galaxias já apresentavam princípios da reprodução sexualizada que necessita do concurso das funções masculinas e femininas. E justamente isso o que vemos fazendo certos astros num sistema reunindo ambas funções, demonstrando que ele é hermafrodita, tal como a primeira célula viva criada por ele.

Agora os cientistas do Center for Chemical Evolution e outros grupos em volta do mundo estão trabalhando duro tentando provar sua hipótese, ou seja, de que moléculas químicas complexas podem, por si só, iniciarem a se reproduzirem. Ainda não conseguiram, mas pode ocorrer que vejam uma molécula se reproduzir na sua frente e vão sair contando a merecida vitoria. Mas isto só vai acontecer se em tal molécula de alguma forma penetraram os fótons que trazem informações relativas `as funções 1 e 4 da formula universal, ou seja, de vortices nucleares e pulsares… Isto vem por radiação cósmica ( principalmente a função 4) e/ou pelos profundos ventos oceánicos vindos do núcleo terrestre que tem metade das informações para auto-replicação, porem não é fácil que tais informações caiam aqui no mesmo ponto do espaço/tempo e justo encima das moléculas colhidas pelos cientistas.

Mas se isto acontecer, vão ver o certo mas interpretar o mundo errado novamente, pois estão ignorando a força interna `as moléculas dirigindo o evento. Nas origens da vida, que durou bilhões de anos, estas moléculas estavam a céu aberto ou em câmeras marinhas sobre ventos oceânicos, e num planeta continuamente bombardeado por radiação cósmica, o calculo das probabilidades sugere que isto deve ter acontecido.

Estão chegando perto de onde chegou a Matrix/DNA (isto se  a teoria da Matrix/DNA estiver correta) . Mas crer que a evolução química por si só produziu a evolução biológica seria o mesmo que crer que a evolução da carroça por si só produziu a evolução do automóvel, sem ver os agentes ocultos, como a mente humana num caso e a formula da Matrix/DNA no outro, dirigindo a evolução universal.

xxxx

E meu comentario postado no Youtube:

Louis Charles Morelli – 9/3/2017

Congratulations, but,… these scientists are doing a big mistake. They are too shy, timid, when they went to the right place – the astronomic and planetary state of the world before life’s origins – searching for anything that were replicating or doing something repetitive. There is no other way for proving this hypothesis and the answer must be there, of course ( it is not plausible that quantum fluctuations could acting over big complex molecules). By another hand, I kept me about seven years at the virgin biosphere of Amazon jungle looking for explanations about life’s mysteries and like this “reproduction” issue, and found something very rational.

There is no way to explains complex properties of life with our modern current astronomical theories and models. So ( I thought), these models are not complete and a method for searching best models is calculating evolution by its reverse way, starting at the first cell and going back, if possible, till the Big Bang. The results are new models that offers events of self-recycling at astronomical scale where Earth is participating. Self-recycling is another name for repetition, but it can be more complex, included, permitting variation.
So, we have these models resumed at “The Universal Matrix/DNA formula for all Natural Systems and Life’s Cycles Theory” ( you can Google it) and see a model where astronomical bodies composing a system performs the principles of sexual reproduction. Go back to the space – but not to the wrong space – because the answer is there.

Origem da Vida: Descrição Da Primeira Química para Leigos

domingo, junho 4th, 2017

xxxx

Post postado em:

https://www.youtube.com/watch?v=xyhZcEY5PCQ&lc=z12rtxmiipbfz1ake22vcfh4lymvcpskj.1496220005938083

What drives the molecules to be ordered by themselves? is there an ordering force? How do yo know that first molecules that got some level of order, kip that order during millions of years? I can tell a story of how the Mona Lisa painted alone without human intervention, will you believe that tale? No? why no?, I can not believe in your tale
To Jorge Juarez: I believe you may not understand how chemistry works. I will try to explain in layman’s terms.
RNA/DNA did not just form by themselves. At first, there were extremely simple replicating molecules. How this works is that when these molecules come into contact with certain chemicals, they bind. Certain molecules will bind to certain parts of the molecule. Some of these happen to be a “reverse” copy; they bind in the opposite order.
When all spots have been filled, the new molecule splits at these sites, and thus replicates. It splits do to opposite forces. These first molecules were only 5-6 atoms in length; very simple. Because these molecules could replicate, they eventually became very common, and thus were everywhere.
Now, it is common knowledge that molecules can undergo changes (chemical reactions). Sometimes, these changes would make these molecules replicate faster by becoming more attractive (more binding spots). Sometimes they would become more stable (harder to break). Etc. Now, because these changes would make these molecule “superior” (they were able to replicate better than previous versions), they would become very numerous. And just like before, after time they would become extremely common.
Now, this process would repeat, and repeat, and repeat. Each time getting just SOMEWHAT slightly more complex. Repeat this process millions of times, and its not hard to see where DNA came from. The reason the molecules kept that order is because once they started replicating, there were tons of them. So even if most got destroyed, there were always extra because they replicated. What you have to also understand is that there are TRILLIONS AND TRILLIONS of different chemical combinations possible.
Even infinite. So it is not unlikely that at LEAST one of these combinations could produce a self-replicating molecule. Also, there are 10000000… molecules in the Earths oceans, undergoing chemical reactions. So its not really hard for life to form.
The analogy of the Mona Lisa does not work, because dna did not just fully appear. It took millions of small very simple steps in order to finally emerge. The process took millions-billions of years.
xxxx
+Jorge Juarez  – Because we do not know the exact conditions of early Earth. That is why we are unable to replicate it. That is the whole point; we are trying to find the conditions of early Earth. We have an idea, but its too long ago to know exactly. Thus, scientists are trying different methods and environments. We are slowly narrowing it down. The key is replicating the EXACT same conditions. Given that this was 4 BILLION YEARS AGO, I think a lot of credit is due to the fact we ALREADY have RNA forming in labs. This I think is your misunderstanding. We DO know how life formed. We DO know the process. What we don’t know is the environment.

Tabela Periodica dos Elementos e Suas Utilidades

domingo, novembro 27th, 2016

xxxxx

Ver o resto desta interessante tabela em:

http://elements.wlonk.com/ElementsTable.htm

 

 

Origem da Vida: a Teoria Atualizada da Quimica e Astrobiologia

quinta-feira, janeiro 29th, 2015

https://conexaociencia.wordpress.com/2009/10/19/astrobiologia-e-origem-da-vida/

Palestras ministradas durante a XXV Semana de Química da UEL.

As possibilidades de como a vida se originou

Como a vida surgiu e evoluiu? Existem seres vivos em outros planetas? E qual vai ser o destino da Terra? “Todas as respostas para essas perguntas podem estar na Astrobiologia”, afirma o Prof. Dr. Dimas Zaia – graduado em Química pela Universidade Estadual de Maringá (UEM) e em Física pela Universidade Estadual de Londrina (UEL), mestre e doutor em Química Analítica pela Universidade de São Paulo (USP), e bolsista de um doutorado sanduíche (1) pela Rockfeller University, Nova Iorque entre 1992 e 94 – em uma das palestras ministradas durante a XXV Semana de Química da UEL.

Astrobiologia, segundo  o professor Zaia, é o estudo da origem, evolução, distribuição e do futuro da vida no universo. De acordo com o site da NASA (http://astrobiology.nasa.gov/about-astrobiology/), o termo foi criado em 1996 pela própria agência. E, segundo o professor, essa ciência conta com os estudos de profissionais de diversas áreas – como químicos, físicos, astrônomos, geólogos, biólogos, matemáticos e até mesmo filósofos.

Matrix/DNA: Ôpa! Preciso descobrir quem são os filósofos que estão lá…

Na palestra, o pesquisador comentou que, dos estudos da Astrobiologia, é possível retirar algumas hipóteses sobre a origem de seres vivos na Terra. Uma delas, desenvolvida pela chamada Química Prebiótica (2), afirma que a vida começou a partir de precursores cósmicos e planetários, ou seja, moléculas – como amônia, gás carbônico e metano – vindas do próprio planeta terrestre e de outras partes do universo. Segundo o professor, é possível que essas moléculas tenham sido trazidas por poeiras estelares e por micro meteoros que se chocaram com a Terra, há bilhões de anos. Ao perfurar a atmosfera terrestre, esses asteroides carregariam grande quantidade de energia, a qual aumentaria a temperatura dos oceanos, permitindo que ocorressem reações químicas, originando os primeiros aminoácidos – estruturas componentes dos peptídeos, os quais, por sua vez, compõem as proteínas, que são os principais elementos constituintes dos seres vivos.

Matrix/DNA: “Então ele está querendo dizer que as primeiras moléculas da vida foram “cozinhadas” num recipiente de água quente? Isto  seria fácilverificar pela quimica. Foi feito experiencias colocando-se estes ingredientes – amônia, gás carbonico e metano – numa panela com agua salgada do oceano e levada ao fogo?”

De acordo com o Prof. Dr. Dimas Zaia, a Química Prebiótica também deu espaço para a hipótese de que as moléculas necessárias para as reações químicas poderiam ser produzidas aqui, e não vindas do espaço como a teoria citada anteriormente acreditava. Para isso, a energia usada nas ligações entre as moléculas seriam originárias dos raios ultravioletas emitidos pelo Sol. Segundo o professor, a criação dessas duas hipóteses deixa uma grande questão a ser respondida: “qual seria a origem das moléculas que se reagiriam dando origem aos aminoácidos?”

Matrix/DNA: “Porque os raios ultravioletas e não os outros? Segundo minha fórmula, nas origens devem serem aplicados os raios X e gama.

Para reforçar a segunda possibilidade, Dimas Zaia explica que, nas análises dos meteoros, foi possível identificar aminoácidos que não seriam protéicos, ou seja, aminoácidos que não compõem a proteína. Porém, ele reforça que é necessário ficar atento ao fato de que isso tudo não passa de uma possibilidade, e que talvez os aminoácidos que deram origem à vida terrestre tenham sido produzidos na Terra; e pode ser também que, futuramente, seja provado o contrário.

Matrix/DNA: ” Nos meteoros, os aminoácidos não compõem a proteína. Hummm… interessante. Um caminho  aberto para formas de vida muito diferente da nossa?

Entre os trabalhos que o Prof. Zaia desenvolve, um refere-se ao assunto. No projeto, ele realiza um estudo sobre a absorção de biomoléculas – bases nitrogenadas de DNA e RNA (3) e aminoácidos – em materiais que apresentam alto teor de minerais, como a argila. Ele também afirmou, durante a sua palestra, que já criou, em laboratório, alguns protonoides – estruturas resultantes do aquecimento do aminoácido a 250°C e que se assemelha a uma célula de um ser vivo.

A cronologia da vida na Terra

O professor André Celligoi, graduado em Geologia pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), com mestrado e doutorado em Geociências (Recursos Minerais e Hidrogeologia) pela Universidade de São Paulo (USP), ministrou a palestra “Evidências da vida Primitiva”, que ocorreu no dia 30 de setembro de 2009, nas dependências do departamento de Geociências da UEL.

A palestra tinha como objetivo analisar as evidências da origem da vida no planeta Terra, levando em consideração as condições climáticas, geográficas e químicas da época. O geólogo destacou que não é possível saber como se deu a origem da vida no planeta Terra, já que o tempo em que esses eventos ocorreram é um fator que atrapalha as pesquisas sobre o assunto. Entretanto, estudos direcionados a esse tema revelam possíveis evidências da origem da vida em nosso planeta. De acordo com o palestrante, o fóssil foi tomado como objeto de estudo para as pesquisas na área. A partir das análises feitas nessas estruturas foi possível encontrar vestígios de organismos que viveram há bilhões de anos. “Os fósseis foram usados para traçar uma linha de pesquisa e tentar descobrir hábitos de vida de animais, através de análises de uma pegada, por exemplo” palestrou  o prof. Dr. Celligoi.

O professor atentou durante toda a palestra para a questão da temporalidade das eras geológicas para traçar a explicação dos acontecimentos que tiveram mais importância em determinados intervalos de tempo. Declarou também que foi a partir de 600 milhões de anos atrás que surgiram os animais no planeta, na era Pré-cambriana, que é compreendida entre o aparecimento do Planeta Terra, há certa de 4,5 bilhões de anos, até o surgimento de uma grande quantidade de fósseis, que marca o início do período Cambriano, há cerca de 540 milhões de anos.

Mas, colocando em ordem de acordo com a temporalidade anteriormente citada, foi há muitos milhões de anos que surgiu a primeira evidência de vida. “Os estromatólitos são a primeira evidência de vida no planeta. Eles têm uma datação que gira em torno dos 3,5 bilhões de anos”, explicou André Celligoi. O professor complementou ainda que esses seres são estruturas formadas por algas cianofíceas, conhecidas popularmente como algas azuis, encontrados em maior número na Austrália nas zonas de intra-maré, devido a condições pré-determinadas, como uma maior temperatura das águas nessas regiões inter-tropicais. Em seguida, aparecem na classificação o Sélex Gunflint (2 bilhões de anos), um ser vivo que não tinha ainda um núcleo organizado.

Matrix/DNA: “Pesquisar estromatólitos ( algas cianofíceas) e Sélex Gunflint.

1) estromatólitos: Estromatólito pode ser definido como uma rocha fóssil formada por atividades de microrganismos (ciamobaterias) em ambientes aquáticos,  que, quando acumulados no fundo de mares rasos, formam uma espécie de recife

Estromatólitos, de 3,5 bilhões de anos, formados por bactérias

As cianobatérias podem ter sido os antepassados dos cloroplastos – ver teoria da endossimbiose), pois eram exclusivamente fotosintétizadores. As cianobactérias foram os principais produtores primários da biosfera durante mais ou menos 1.500 milhões de anos, e continuam sendo nos oceanos. A Terra continha pouco ou nenhum oxigênio naquela época. Alguns cientistas consideram que a atmosfera primitiva continha apenas 0,0001% de oxigênio.7 8 O mais importante é que através da fotossíntese elas encheram a atmosfera de oxigênio.9 Continuam sendo as principais provedoras de nitrogênio para as cadeias tróficasdos mares, sendo ainda de utilidade para a alimentação humana e produção de biocombustíveis como o biodisel 

2) Silex Gunflint

The Gunflint chert is a sequence of banded iron formation rocks that are exposed in the Gunflint Range of northern Minnesota and northwestern Ontario along the north shore of Lake Superior. The black layers in the sequence contain microfossils that are 1.9 to 2.3 billion years in age. Stromatolite colonies ofcyanobacteria that have been converted to jasper are found in Ontario. The banded ironstone formation consists of alternating strata of iron oxide-rich layers interbedded with silica-rich zones. The iron oxides are typically hematite or magnetite with ilmenite, while the silicates are predominantly cryptocrystalline quartz aschert or jasper, along with some minor silicate minerals.

Stanley A. Tyler examined the area in 1953, and noted the red-colored stromatolites. He also sampled a jet-black chert layer which, when observed petrographically, revealed some lifelike small spheres, rods and filaments less than 10 micrometres in size. Elso Barghoorn, a paleobotanist at Harvard, subsequently looked at these same samples. Barghoorn concluded that “they were indeed structurally preserved unicellular organisms.”[2] In 1965, the two scientists published their finding, and named a variety of the Gunflint flora.[3] This created an academic “stampede” to explore Precambrian microfossils from similar Proterozoic environments.

xxxx

Meu comnetario postado no “Conexão Ciencia””

LouisMorelli:

A vida foi produzida por uma parte ( um planeta) de um sub-sistema ( o solar) ou por um sistema astronomico completo ( a galaxia)? Ou seja: quais destes teriam as informações suficientes para produzir a vida?

As teorias quimicas estão reduzindo a possibilidade ao planeta apenas, baseados na experiencia de Miller/Urey. Porem existe a teoria da Matrix/DNA que apresenta um modelo de sistema astronomico que se encaixa como precessor da vida biológica. Este modelo de um building block dos sistemas astronômicos tem a mesma configuração e funcionalidade de um building block do DNA, que é um par lateral de nucleotídeos. Se assim for, não são eventos espontâneos ao acaso que produzem vida em planetas, mas sim uma evolução continua que vem desde as origens do Universo, a qual, quando chegou na forma de galaxias, entrou em entropia e se projetou como sistema inteiro na forma de sistemas biológicos. Esta teoria ( de minha autoria) surgiu quando eu fazia estudos de anatomia comparada entre os sistemas naturais vivos e os dito “não-vivos”, como átomos e sistemas astronômicos. Se esta teoria estiver correta, estava faltando na sopa primitiva de Oparin e Miller/Urey, a descarga de fótons provenientes da luz solar e radiação cósmica para obter os certos aminoacidos que teriam dado o segundo passo da evolução, formando as proteínas.

Lembre-se que o primeiro ser vivo real e completo foi um “sistema” – o sistema celular – e sistemas só podem vir de outros sistemas, e não de meras partes, como é a Terra.

Quimica: E-book e Website a Pesquisar

quinta-feira, dezembro 11th, 2014

ChemWiki: The Dynamic Chemistry E-textbook

http://chemwiki.ucdavis.edu/

Quimica e Biologia: Informacoes Sobre Pratica Atual

quarta-feira, janeiro 15th, 2014

The Significance of the 2013 Nobel Prize in Chemistry and the Challenges Ahead

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003423

by     Ruth Nussinov  -Published: January 02, 2014 – DOI: 10.1371/journal.pcbi.1003423

(copiado texto para pesquisa e atualizacao da Matrix/DNA – os grifos sao itens a pesquisar)

Last week, the 2013 Nobel Prize in Chemistry was awarded to Martin Karplus, Michael Levitt, and Arieh Warshal for “the development of multiscale models for complex chemical systems”. As the Royal Swedish Academy of Sciences noted, “Chemists used to create models of molecules using plastic balls and sticks. Today, the modelling is carried out in computers. In the 1970s, Martin Karplus, Michael Levitt and Arieh Warshel laid the foundation for the powerful programs that are used to understand and predict chemical processes. Computer models mirroring real life have become crucial for most advances made in chemistry today.” Furthermore, “Today the computer is just as important a tool for chemists as the test tube. Simulations are so realistic that they predict the outcome of traditional experiments.” [1]

This event is a milestone for the broad community that PLOS Computational Biology represents. Along with Philip E. Bourne, the Founding Editor-in-Chief, and our Editorial Board, which proudly lists Michael Levitt among its members, I extend the warmest congratulations to the winners. Beyond the specific, personal scientific achievements that have already been widely discussed, we must consider the more general and broader context of this unique prize. Here, I would like to present this Nobel Prize within this framework, emphasizing its magnitude and far-reaching implications not only for computational biology, but for the biological community at large.

In recent decades, molecular biology has progressed by leaps and bounds. Huge technological advances have taken place in sequencing; in mapping structure and dynamics via electron microscopy (EM), X-ray, and nuclear magnetic resonance (NMR); in manipulating imaging of nuclei and cells; in sequencing single biomolecules; and more. These have led to fundamental new insights; biology and medicine have soared to new heights with the DNA double helix providing the molecular basis for genetics and Darwinism. Many steps were required to identify and untangle DNA-RNA-protein sequence-structure-function and reverse transcription processes; RNA enzymes; the importance of key multi-partnered scaffolding molecules under normal physiological conditions and in disease; their structures, mutations, and the principles and mechanisms of their dynamic regulation; and other landmark developments. These involved technological breakthroughs and greater understanding of the specific mechanisms involved. Most of the Nobel prizes in chemistry and medicine in recent years have been awarded at these junctures.

Vast amounts of information on sequences and structures are yet to be explained and pose a challenge for computational biology. Recently, this has been compounded by interdisciplinary studies of the nervous system, posing questions such as how it is structured, how it develops, how it works, the mechanisms of signal processing, and more, all at multiple levels, ranging from the molecular and cellular levels to the systems and cognitive levels. Thus, even if we gain in-depth insight into static properties such as the genomic data and structural snapshots of proteins (DNA and RNA) at different levels of resolution, the truly monumental challenge of understanding their dynamics still looms ahead. And eventually, it is the dynamics of molecules that provides the basis for cells, tissues, and organisms’ development and work.

The systems in question operate at all scales: force fields and free energy landscapes relevant for protein folding and function, large complexes, biomolecular recognition involving proteins, DNA, RNA, lipids, post-translational (and DNA) modifications, and interactions with small molecules. On a larger scale we see cellular locomotion, cell division and trafficking, and cell-cell recognition. Furthermore, beyond these lurks the working of the complex cell as a cohesive unit: the cellular network controls metabolism and regulation, intra- and inter-cellular signaling, and the neural circuits of nerve cells, where the activity of one cell directly influences many others. All are dynamic, all change with the cellular environment, and all present a daunting challenge. The relevant timescales range from femtosecond for simple chemical reactions to the eons of evolution; however, all operate with the same underlying physical principles of conformational variability and selection.

At each timescale and corresponding physical size we strive to identify the relevant moving parts and degrees of freedom and to formulate effective—though often approximate—rules for their mutual interactions and resulting motion. Solving, understanding, and computing the dynamic behavior at any given scale is of great interest in its own right and provides approximate dynamical input for the next scale, which is one rung above it. Only at the lowest, most basic scale of individual atoms and electrons are the dynamical rules (electrostatics and Schrödinger’s equation) completely well defined. And the all-important work cited by the Nobel Prize Committee and which is carried out by our community is roughly at the first/second level, making it of fundamental importance.

This Nobel Prize is the first given to work in computational biology, indicating that the field has matured and is on a par with experimental biology. It may also be the very first prize given in any area of the exact sciences for calculations. What is different in the present case? I believe that the answer is simple: the present calculations are of much greater interest to a much broader community. In endeavoring to imitate the basic processes of life in silico, great strides are being made toward understanding the secret of life. Computational biology, and simulations, for which Martin Karplus, Michael Levitt, and Arieh Warshal shared the Nobel Prize, can carry the torch leading the sciences to decipher the elemental processes and help alleviate human suffering.

What are the challenges ahead? Are simulations with timescales of microseconds, milliseconds, or beyond, under the current force field framework, capable of producing results in agreement with experiments also for large and complex proteins like membrane receptors? Do the challenges also lie in the type of questions which are asked, for which such long timescale simulations can be useful in providing answers? Or is it the biology behind the questions that is also the key? Ultimately, as in experimental biology which also exploits methods and machines, it is likely to be all of the above. Computations are our treasured tool; they are not our aim. Merely running long molecular dynamics trajectories is unlikely to advance science.

PLOS Computational Biology joins the International Society of Computational Biology (ISCB) and our computational biology community in congratulating the awardees and celebrating this momentous event.

 

Colloidal Suspensions: Principios na Formaçao dos Sistemas Terrestres, Frequencias da Luz, etc., a Pesquisar

quinta-feira, dezembro 19th, 2013

Na formação de processos e sistemas na Terra, vieram os princípios, forças e elementos ancestrais. Tendo ou não os fótons da Matrix, preciso entender esta evolução.

Colloidal suspensions of microspheres in a liquid may not be simple systems

Colloidal suspensions of microspheres in a liquid may not be simple systems

The static structure factor of the microsphere suspension (left panel) and the effective inverse diffusion constant of microspheres (right panel) show similar dependency on scattering vector, which suggests that the lowest free-energy configuration in the static case also has a long lifetime.

Read more at: http://phys.org/news/2013-12-colloidal-suspensions-microspheres-liquid-simple.html#jCp

Itens: Brownian Motion, polystyrene,

Importantes textos:

Colloidal suspensions and the related gels (solid colloidal systems) are of interest because many of them have fundamentally useful properties. Natural systems such as milk, the interior of cells, even atmospheric fog are colloidal systems. Synthetic colloids exist in coatings, cosmetics, and elsewhere.Understanding colloids could lead to a deeper understanding of complex soft matter, with implications for new or improved materials and polymer science, but we have only an incomplete picture of the structure and dynamics of colloidal suspensions.(Etc…)

Working with high-brightness x-rays from the U.S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne, the research team used the new synchrotron x-ray technique called ultra-small-angle x-ray scattering (USAXS)–x-ray photon correlation spectroscopy (XPCS) to help them see through colloidal systems in order to reveal inner secrets. This new technique, implemented on the dedicated USAXS beamline (initially the X-ray Science Division 32-ID beamline, and later the ChemMatCARS 15-ID beamline) at the APS, overcomes the problem of attempting to use light to study such opaque systems because the wavelengths of x-rays are so much shorter than that of visible light and so can resolve details of the  involved and their behavior on concomitantly shorter length scales.

Rather than the apparently simple Brownian motion taking place in this , it seems that the microspheres move collectively, whereby buffeted particles pull along their neighbors. Such behavior implies that, compared with expectations, the suspended particles spend much longer times in close proximity without touching. Potentially, this behavior could be exploited in cases where suspended particles serve as centers for chemical reactions.