Archive for setembro 1st, 2017

A cultura humana foi produzida pela sua biologia, porem, já existia cultura nas estrelas – revela a Matrix/DNA

sexta-feira, setembro 1st, 2017

xxxxx

Bom artigo sobre origens e desenvolvimento da cultura humana, defende a tese de que a biologia é a causa produtora da cultura. Por meu lado, fui consultar a formula da Matrix/DNA e conclui que a cultura humana esta’ para o sistema social humano assim como a identidade dos sistemas naturais estão para os sistemas, portanto, o que se entende por cultura já existia antes das origens dos sistemas biológicos. Postei um comentário explicando isso no artigo, o qual vai copiado abaixo do link:

O ser humano como um animal biologicamente cultural

https://universoracionalista.org/o-ser-humano-como-um-animal-biologicamente-cultural/?utm_medium=botao&utm_source=ur&utm_campaign=onesignal

O ser humano como um animal biologicamente cultural

Louis C. MorelliLouis C. Morelli – 1/9-set/2017

Good food for thought! Mas eu acrescentaria algo ao artigo. Dizer que a cultura é biológica leva a crer que a biologia criou a cultura pela primeira vez na Natureza, mas vou buscar fatos no passado quando ainda não existia a biológica organização da matéria para sugerir que cultura veio antes, seria uma constante universal. A formula universal para todos os sistemas naturais sugere que cultura é um nome para outra coisa existente mais profunda: a identidade de um sistema natural qualquer.

Como a formula demonstra, sistemas são o conjunto de partes especificas e funcionais inter-conetadas dentro de um involucro qualquer. A soma de informações de cada parte gera o sistema que tem mais informação do que todas suas partes separadas. Porem, como estas partes interagem entre si gerando sub-partes que também interagem, mais informações internas são geradas, as quais não são agregadas `as partes, porem são acrescentadas ao conjunto total de informações que é o sistema. Com isso, o sistema gera uma identidade própria, diferente e muito maior que a identidade de cada parte.

E’ esta identidade de sistema que controla o equilíbrio interno ( que vem da evolução do equilíbrio termodinâmico nos sistemas “não-vivos”) entre todos os seus elementos. E isto acontece em qualquer sistema natural, desde os mais simples como átomos, sistemas estelares, galácticos, vegetais, bacterianos, etc. Pois esta identidade destes sistemas simples, muitos antes da biologia aparecer, que evoluiu para cultura quando a humanidade criou sistemas sociais.

Vendo ” cultura” por esta perspectiva se entende melhor este fenômeno, pois vamos buscar suas raízes, suas causas primeiras desde o Big Bang. E assim encontramos explicação para algo que é dito no artigo mas fica difícil de engolir: que novos genes são produzidos para encaminhar ao homem cultural. Não se trata de novos genes, a função e seu mecanismo já existia disponível na nossa herança dos sistemas não-biológicos, bastava expressa-la. E também acabamos de criar outra definição para cultura: é a identidade de um sistema. Cultura também pode ser a sua mente em relacao ao seu corpo como sistema, ou ainda, cultura é uma espécie de software que permeia um sistema natural físico, o qual é o hardware. Mas tudo isso que digo é resultante da minha interpretação dos modelos teóricos da Matrix/DNA Theory e posso estar cometendo erros de interpretação.

xxxx

O paragrafo notável do artigo que revela sua tese da cultura como produto biológico é o seguinte:

”  O ser cultural do homem deve ser entendido como biológico. Há mais do que um jogo de palavras na afirmação de que o homem é naturalmente cultural, ou ainda, de que a chave para a compreensão da natureza humana está na cultura e a chave para a da cultura está na natureza humana. O homem é a um só tempo, criatura e criador da cultura. Nas palavras de Morin (1973, p. 92), “o que ocorreu no processo de hominização foi uma aptidão natural para a cultura e a aptidão cultural para desenvolver a natureza humana”. Desse modo, “desaba o antigo paradigma que opunha natureza e cultura” (p. 94). Entretanto, apesar da força do argumento, mesmo várias décadas depois, ainda não se foi muito adiante.”

Quais regioes do espectro eletromagnetico plantas usam para dirigir a fotosintese?

sexta-feira, setembro 1st, 2017

xxxxx

Funcao Sistemica das Plantas pela Fotosintese

Funcao Sistemica das Plantas pela Fotosintese

( Copiado docto. em PDF para traduzir aqui, e estudar o assunto, do link:

https://www.heliospectra.com/sites/default/files/general/What%20light%20do%20plants%20need_5.pdf

Which regions of the electromagnetic spectrum do plants use to drive photosynthesis?

Green Light: The Forgotten Region of the Spectrum.

Luz verde: A esquecida regiao do espectro

No passado, os fisiologistas das plantas usaram luz verde como uma luz segura durante experimentos que requeriam escuridao. Era assumido que plantas refletem a maioria da luz verde e que ela nao induziria a fotosintese. Sim, plantas nao refletem luz verde mas a sensitividade da visao humana absorve a regiao verde em mais ou menos 560 nm, a qual permite a nos preferencialmentte ver o verde. Plantas nao refletem toda a luz verde que incide sobre elas mas elas refletem o suficiente para nos detector-mos ela. Se voce esta’ interessado pode pesquisar para saber qual a regra da luz verde na fotosintese.
O espectro eletromagnetico: Luz
A luz visivel oscila desde a azul-fraca `a luz vermelha-forte e e’ descrita como as ondas de comprimentos entre 380nm e 750nm, apeasr de que isto varia entre ondas individuais. A regiao entre 400nm e 700nm e’ a que as plantas usam para dirigir fotosinteses e e’ tipicamente referida como “Radiacao Ativa Fotosintetica (PAR, em ingles). Ha’ uma relacao inversa entre comprimento de onda e energia quantica: quanto mais elevada o comprimento da onda, menor a energia quantica, e vice-versa.
Plantas usam comprimentos de onda fora do PAR para o fenomeno conhecido como Fotomorfogeneses, o qual e’ luz regulando mudancas em desenvolvimento, morfologia,bioquimica e estrutura e funcao da celula. Os efeitos de diferentes comprimentos de onda na funcao e forma da planta sao complexos e estao provando serem uma interessante area para estudo por muitos cientistas das plantas. O uso de especifica e ajustavel LEDs permite a nos separar `a parte as regras de areas especificas do espectro na fotosintese. Por consequencia, a sinergia entre fotosintese e fotomorfogeneses pode ser mais acuradamente examinada agora. Este “paper” focalize fotosintese. Fotomorfogense sera tratada no futuro.

(continuar traducao)

Ver figura: The electromagnetic spectrum.

Photosynthetic pigments and light absorption

The first step in photosynthesis is the absorption of light by antenna pigments located within the thylakoid membrane in the chloroplasts. Photosynthetic organisms contain an assortment of pigments thereby allowing absorption of a maximum number of wavelengths. All photosynthetic organisms contain chlorophyll a and this is the primary light harvesting pigment. Higher plants contain accessory pigments that are also involved in light harvesting and photochemistry. These are chlorophyll b and the carotenoids.
An excellent and detailed description of plant pigments can be found at:
http://www.life.illinois.edu/govindjee/photosynBook/Chapter9.pdf
Ver figura: Photosynthetic antenna where light absorption occurs. :
Light energy is absorbed by the pigmentprotein complexes in the antennae and is transferred through Förster energy resonance transfer to the reaction center where light energy is converted to chemical energy. Light is collected by 200300 pigment molecules, which are bound to light- harvesting protein complexes located in the thylakoid membrane. The energy generated by light is used in primary and secondary plant metabolism Light absorption by photosynthetic pigments is extremely fast. It occurs within femtoseconds (10-15 s) and causes a transition from the electronic ground state to an excited state and within 10-13 s the excited state decays by vibrational relaxation to the first excited singlet state. Photosynthetic antenna systems are very efficient at excitation transfer processes. Under optimum conditions over 90% of the absorbed quanta are transferred within a few hundred picoseconds from the antenna system to the reaction center which acts as a trap for the exciton. The exciton transferred to photosystem II results in the extraction of an electron from water that is passed along the photosynthetic electron transport chain to an excited photosystem I which subsequently reduces NADP+ to NADPH which serves as an energy source for plant metabolism. A second energy source used in plant metabolism, ATP, is also produced during electron transport via an ATPase driven by a proton gradient. There are several alternative electron transport routes utilized by plants but these are outside of the scope of this paper. For a more detailed look at light absorption:
http://www.life.illinois.edu/govindjee/photosynBook/Chapter10.pdf.
Absorption spectra versus Action spectra

Reading through the popular literature on the internet and on LED lamp websites it is obvious that there is little understanding about which wavelengths plants use for photosynthesis. It is apparent that there is confusion between what an absorption spectrum and an action spectrum are and what they represent. An absorption spectrum defines the wavelengths that are absorbed. An action spectrum defines the wavelengths that are most effective for photosynthesis. In other words, it is the portion of the spectrum that does the work. This is what is most important in plant growth and metabolism. It is important to note that light absorption and light utilization are two different phenomena.

1. What is Absorption Spectrum? Which regions of the visible light spectrum do plants absorb light? This is different for extracted chlorophyll molecules, whole chloroplasts (where the chlorophyll resides) and plant leaves.  To complicate matters, the solvent in which chlorophyll is extracted also has an effect on the absorption spectrum.
The absorption spectra of chlorophylls a and b extracts is why LED grow lamps are typically made up of blue and red LEDs. The absorption spectra of isolated pigments have been the foundation for LED selection for most LED lamps. Furthermore, it has been ignored that carotenoids play a role in light absorption and energy transfer to the photosystems.

Ver figura: The absorption spectra of extracted chlorophyll and carotenoids (accessory pigments).  The primary light harvesting chlorophylls absorb light in the blue and red regions. Carotenoids absorb in the blue and green regions. 400
Chlorophyll A
500
Wavelength of light (nm)
600 700
Chlorophyll B
Amount of light absorbed
Carotenoids

The absorption spectra of isolated pigments in vitro do not represent what the whole plant absorbing. Each pigment has a specific absorption spectrum and in living systems pigments never exist alone. They are always bound to proteins and this shifts their absorption spectrum. This is why wavebands are absorbed rather than a single wavelength. In vivo , the probability of a pigment absorbing light absorption depends on: 1) the specific protein that the pigment is bound to; 2) the orientation of the pigment-protein complex within the cell; 3) the forces exerted by the surrounding medium on the pigment-protein complex.Ver figura: Absorption spectra for pigment extracts (isolated chlofophyll), disrupted and whole chloroplasts and a plant leaf where all of the pigments remain bound to their specific proteins.  There is very little absorbance of green light (500-600 nm) in extracted chlorophyll molecules. However, as the integrity of the leaf increases we see more and more absorption in the green region.
Therefore, plant leaves do absorb green light. In this case, about 70%.Figure reprinted with permission from Dr. Holly Gorton .(Absorptance spectra of isolated pigments, disrupted chloroplasts, intact chloroplasts, and whole leaves from spinach (Spinacia oleracea) Modified from (Moss & Loom is, 1952)). (http://photobiology.info/Gorton.html)2. What is an Action Spectrum?An action spectrum describes the efficiency with which specific wavelengths produce a photochemical reaction. Photosynthesis involves the harvesting of light (absorption spectrum) and the subsequent photochemical and biochemical reactions. Thus, an action spectrum describes the wavelengths that actually drive photosynthesis.
The seminal paper describing the action spectra for 22 plant species was published by KJ McCree (1972). This work was originally done in order to provide an accurate definition of PAR, which had not been previously described empirically. The action spectra described in the McCree paper plot the efficiency or quantum yield of CO2 assimilation as a function of wavelength. Interestingly, similar action spectra were observed for the 22 plant species. However, there was slight variation between species in the blue end of the spectrum. The results from this work indicated that PAR was between 400 nm and 700 nm and that all wavelengths within this region were used in photosynthesis.

www.heliospectra.com                                                                                 October 5, 2012
Action spectra for 22 plant species grown in the field (top plate) and a growth chamber (bottom plate).  (McCree 1972).
The areas of the spectrum that drive photosynthesis are highest in the red end (600-700 nm), followed by the blue region (400-500 nm) and lastly, the green region (500-600 nm). These data show that between 50 and  75% of the green light is used in photosynthesis.
RED > BLUE > GREEN
Thus, Green light is necessary for photosynthesis.The action spectra for higher plants and a green alga ( Ulva ) (http://photobiology.info/Gorton.html)
The action spectrum for higher plants presented here (b) is an average of the data presented in the McCree (1972) paper. On average, over 70% of the green light was used in photosynthesis.
Crop plants have been bred for uniformity and thus have similar action spectra. Algae and other photoautotrophic organisms have evolved differently.Figure reprinted with permission from Dr. Holly Gorton. (
Photosynthetic action spectra for the green alga Ulva (two cell layers) (Haxo & Blinks, 1950) and higher plants (multiple cel l layers). The curve for higher plants represents the average of action spectra obtained for 22 crop plants (McCree, 1971/1972) recalculated on a photon basis.).The Role of Green Light in Photosynthesis.
It is clear that green light is a player in photosynthesis along with the other portions of the spectrum. How and where does this occur? Blue and red light are absorbed preferentially at the adaxial (upper) side of leaves and are more efficient at driving photosynthesis in this region compared to green light (Sun et al. 1998; Nishio, 2000; Terashima et al., 2009).  As a consequence, green light is transmitted deeper into the leaf and is more efficient than either blue or red light at driving CO2 fixation at the abaxial (lower) sides (Sun et al. 1998; Terashima et al., 2009). Indeed, on an absorbed quantum basis, photosynthetic efficiency or quantum yield for green light is similar to that of red light, and greater than that of blue light in the deeper layers of a leaf (Terashima et al. 2009).

 Ver figura: Figure reprinted with permission from Mr. Michael Knee.
Transverse section of a lilac leaf (left panel) and schematic of the internal structure. Light is absorbed by pigments within the various layers of cells. The different cell layers have different absorbance properties. (hcs.osu.edu/hcs300/anat3.htm).

Conclusions

Typical absorption values of green light (550 nm) range from 50% in lettuce to 90% in evergreen broadleaf trees. As observed above in the action spectra, the entire light spectrum is used to drive photosynthesis. It appears as though green light is not a safe light and that green light is required for optimum whole plant photosynthesis. Recent studies have determined that green light is more photosynthetically efficient than red or blue in the deeper layers of leaves. The experiments we have performed at Heliospectra support the importance of green of green light for optimal plant growth and have found that the amount of green required is species dependent. The Heliospectra LED selection differs from most other LED plant growth lamps and this was based on full understanding of photosynthesis and plant physiological processes.