Posts com Tags ‘archaea’

Doenças: Matriz Explicando Porque Archaea Não Causa Doenças?

quinta-feira, março | 24 | 2011

A diferença que faz virus produzirem doenças e archaeas não produzirem parece estar na diferente localização das duas espécies na Matriz Astronômica, ou LUCA. Já temos mostrado vários indícios em que os vírus parecem ter vindo do trecho entre F4 e F5, ou seja, seriam aqui os representantes de pulsares e cometas, as partes masculinas de LUCA. Dois motivos são apontados para a razão de existirem virus doentíos: a) procuram a parte fêmea do circuíto, a qual está no DNA ou mitocondria das células, para se reproduzirem, mas com isso danificam a célula; b) estão no princípio da ativação da entropia. A principal diferença da archaea que lhe valeu um terceiro lugar na evolução desde o ultimo comum ancestral, ao lado dos reinos “eucariotes” e “bactérias” está na membrana externa. Tôdas as membranas são formadas por duas camadas paralelas de lípideos e basta saber que membrana é o representante do circuíto total externo para entender o porque das duas camadas: representam os dois fluxos esféricos. Mas enquanto nos outros organismos estas duas camadas podem facilmente serem separadas (como em LUCA os dois fluxos se separam), na archaea existe uma forte ponte entre as duas camadas impedindo sua separação. Ora, o trecho de LUCA onde os dois fluxos são inseparáveis é entre E1 e F3 ( saída do black hole, passagem pelo astro-baby e finalização no planeta). Isto significa que archaea está ainda antes, na evolução do que os virus. Mas explicaria porque nenhuma das quatro espécies d6estes micro-organismos não causam doenças no corpo humano, apesar de muitas habitarem o corpo humano: elas vieram do trecho de LUCA onde a energia é apenas construtiva. E também esta ligação entre as duas camadas explicaria porque a archaea difere de bactéria e eucariotes no sentido que possuem enzimas para operar nas duas faces das moléculas, a left-handed e a right-handed: apesar de, como todos os seres vivos, representar apenas a parte esquerda de LUCA, nela são expressadas com igual intensidade os dois fluxos, que compreendem a totalidade da face de LUCA.

Veja figura a seguir:

Archaea membrana

Membrane structures. Top, an archaeal phospholipid: 1, isoprene chains; 2, ether linkages; 3, L-glycerol moiety; 4, phosphate group. Middle, a bacterial or eukaryotic phospholipid: 5, fatty acid chains; 6, ester linkages; 7, D-glycerol moiety; 8, phosphate group. Bottom: 9, lipid bilayer of bacteria and eukaryotes; 10, lipid monolayer of some archaea

E para prosseguir esta tese, deixemos já registrado o que a Wikipedia fala sôbre a membrana da archaea:

Membranes

Archaeal membranes are made of molecules that differ strongly from those in other life forms, showing that archaea are related only distantly to bacteria and eukaryotes. In all organisms cell membranes are made of molecules known as phospholipids. These molecules possess both a polar part that dissolves in water (the phosphate “head”), and a “greasy” non-polar part that does not (the lipid tail). These dissimilar parts are connected by a glycerol moiety. In water, phospholipids cluster, with the heads facing the water and the tails facing away from it. The major structure in cell membranes is a double layer of these phospholipids, which is called a lipid bilayer.

These phospholipids are unusual in four ways:

Bacteria and eukaryotes have membranes composed mainly of glycerol-ester lipids, whereas archaea have membranes composed of glycerol-ether lipids. The difference is the type of bond that joins the lipids to the glycerol moiety; the two types are shown in yellow in the figure above. In ester lipids this is an ester bond, whereas in ether lipids this is an ether bond. Ether bonds are chemically more resistant than ester bonds. This stability might help archaea to survive extreme temperatures and very acidic or alkaline environments. Bacteria and eukaryotes do contain some ether lipids, but in contrast to archaea these lipids are not a major part of their membranes.
The stereochemistry of the glycerol moiety is the reverse of that found in other organisms. The glycerol moiety can occur in two forms that are mirror images of one another, called the right-handed and left-handed forms; in chemistry these are called enantiomers. Just as a right hand does not fit easily into a left-handed glove, a right-handed glycerol molecule generally cannot be used or made by enzymes adapted for the left-handed form. This suggests that archaea use entirely different enzymes for synthesizing phospholipids than do bacteria and eukaryotes. Such enzymes developed very early in life’s history, suggesting an early split from the other two domains.
Archaeal lipid tails are chemically different from other organisms. Archaeal lipids are based upon the isoprenoid sidechain and are long chains with multiple side-branches and sometimes even cyclopropane or cyclohexane rings. This is in contrast to the fatty acids found in other organisms’ membranes, which have straight chains with no branches or rings. Although isoprenoids play an important role in the biochemistry of many organisms, only the archaea use them to make phospholipids. These branched chains may help prevent archaean membranes from leaking at high temperatures.
In some archaea the lipid bilayer is replaced by a monolayer. In effect, the archaea fuse the tails of two independent phospholipid molecules into a single molecule with two polar heads; this fusion may make their membranes more rigid and better able to resist harsh environments. For example, the lipids in Ferroplasma are of this type, which is thought to aid this organism’s survival in its highly acidic habitat.


U.S.A: Copyright Washington n. 000998487/2001-02-20 | Brasil: Reg. Dir. Autorais - Brasília n. 106.158/11-12-1995 | Louis Charles Morelli