Posts Tagged ‘lua’

Cientistas procuram a energia que ativa campo magnetico nos nucleos de luas

sexta-feira, agosto 11th, 2017

xxxx

Isto interessa na teoria do germe estelar:

“It was generally thought that planetary bodies as small as the moon could not have magnetic fields lasting for billions of years because their small sizes would cause their cores to cool and run out of energy to power a dynamo relatively early in solar system’s history,” Tikoo said. “Therefore, showing that the moon generated a field that lasted at for least 2 billion years, either in a continuous or intermittent state, really pushes the boundaries on what we thought was possible. It challenges us to think of new power sources and mechanisms that can help give the cores of small bodies an energy boost.” – Surprise Finding About Moon Puts Hunt for Alien Life in New Light – Aug.10.2017

https://www.nbcnews.com/mach/science/surprise-finding-about-moon-puts-hunt-alien-life-new-light-ncna791566?cid=sm_npd_nn_fb_mc_170811 via NBC News

Germe estelar como nucleo de planetas

germe estelar morto?

Lua tem nucleo igual da Terra. Como fica teoria da sua origem?

quinta-feira, agosto 3rd, 2017

xxxx

 

Titulo: Novos estudos mostram que a lua tem nucleo igual da Terra

Lua: Teorias de sua Origem e Teoria da Matrix/DNA

domingo, novembro 27th, 2016

xxxx

https://www.youtube.com/watch?v=BSYgIbInz78

Misterios de la Luna

E meu comentario postado no Youtube:

Louis Charles Morelli Louis Charles Morelli – 11/27/2016

O modello cosmologico teorico da Matrix/DNA Theory está sugerindo uma diferente explicação para a origem da Lua. Ela seria um germe de planeta como foram os planetas inicialmente, porem, ao inves dela cair na órbita direta do Sol – como os planetas estão – ela foi capturada na órbita de um planeta e assim, o germe nuclear que ela contém nao se desenvolveu. A Teoria Astronomica Oficial esta cheia de explicacoes teoricas que apelan a violencia no Cosmos, como choques entre grandes corpos, buracos negros canibais, etc. Mas nunca ate agora foi de fato captado algum evento violento. Segundo a Matrix/DNA, a forca gravitacional e a inércia da dark matter nao permite eventos violentos entre grandes astros. apenas existe a violencia de meteoritos porque estes escapam a ação da gravitação. Esta tendência a projetar a violência que faz parte da nossa vida sobre o Cosmos e’ antropomorfismo, porém, o Universo nao foi construído tendo por base o mundo humano, e sim ao contrario. Violencia existe no nosso meio porque somos microscópicos e tambem escapamos as leis da gravitação. Levante seus olhos para o céu e se pergunte: O Cosmos ‘e regulado pelo estado de caos ou pelo estado de ordem? Mais vale sua intuição honesta do que mil teorias tendenciosas… A Teoria da Matrix/DNA, ( google The Universal Matrix of Natural Systems) foi construida com base no raciocínio puro humano e nao com base na invenção da matemática como se esta fosse a linguagem de um Universo mecânico, sem vida…

Formação da Lua – Teoria do Impacto Desafiada Pelo Nucleo da Lua e Composição Material

sexta-feira, março 27th, 2015

xxxx

IMAGE

This artist’s rendering shows the collision of two planetary bodies. A collision like this is believed to have formed the moon within the first 150 million years after our solar system formed. CREDIT – NASA/JPL-Caltech

O estudo de luas e planetas está sendo retardado devido a um incompreensível equivoco do raciocínio humano.  Eu não posso entender porque os astrônomos preferem procurar o processo de  formação de sistemas naturais de macro e micro dimensões pelo método de inventar eventos nunca vistos em tempo e lugar algum,  ao invés de primeiro projetar o conhecido processo de formação de sistemas naturais em nossa média dimensão para calcular aqueles desconhecidos… como é o caso dos sistemas estelares.  Querem acreditar que a Natureza se “esquece” do Seu método aplicado no passado e tem que inventar novos métodos sempre que vai fabricar um novo sistema natural? Querem acreditar que a lua tenha se formado por um imaginário gigante impacto ao acaso… mesmo sabendo que este sistema solar funciona com a incrivel precisão Newtoniana.

A teoria da Matrix/DNA preferiu o método mais racional e projetou o método pelo qual foi criado um sistema natural ( o sistema celular) por outro sistema natural ( o sistema solar), para calcular como foi a formação do sistema solar, supondo que a Natureza sempre aplica o mesmo e único processo tal como sempre temos visto aqui toda vez que nasce um sistema natural. E o modêlo desta teoria tem acertado mais com as recentes descobertas enquanto a teoria do gigante impacto tem errado. Agora o conhecimento de que a anatomia da Lua é igual a anatomia do planeta Terra indica que o processo de formação dos dois astros deve ter sido o mesmo, e sabemos que a Terra não surgiu de um gigante impacto. Tambem o modelo da Matrix/DNA sugere que todos os corpos astronômicos crescem e enquanto isso os seus núcleos vão crescendo enquanto a camada geológica periférica vai diminuindo. Esta seria a explicação do porque a Lua tem um núcleo muito menor do que seria de esperar pela anatomia geral dos corpos celestes.

Tradução e comentario postado no artigo da Space.com

Louis Charles Morelli · Friday, March, 27

The study of moons and planets is being delayed because of an incomprehensible mistake of human reasoning. I can not understand why astronomers prefer to seek the formation process of natural systems of macro and micro dimensions by the method of inventing untold events in anytime and anywhere, rather than designing the first known process of forming natural systems in our average dimension to calculate those unknown … as is the case of star systems. They want to believe that Nature “forgets” its method applied in the past and have to invent new methods  everytime when will manufacture a new natural system? They want to believe that the moon may have formed by a giant impact imaginary random event … even though this solar system works with incredible Newtonian precision.

The Matrix / DNA Theory preferred the more rational way and and designed the method by which a natural system was created (the cellular system) by another natural system (the solar system), to calculate how was the formation of the solar system, assuming the Nature always apply one and same process as always we have seen here every time a natural system is born. And the recent discoveries had shown that the previsions of this model has been right while the theory of giant impact has been wrong. Now that the knowledge of Moon’s anatomy is equal to Earth’s anatomy indicates that the process of formation of the two bodies must be the same, and we know that the Earth did not arise from a giant impact. Also the model of the Matrix / DNA suggests that all astronomical bodies grows and while their nuclei are growing the peripheral geological layer decreases. This would be the explanation of why the Moon has a much smaller core than would be expected.

Meu segundo comentario postado:

Louis Charles Morelli ·  Top Commenter · ESAN FEI

Rob, Mike and Jeffrey… Those churchmen said something when first time Copernicus said that is not the Sun moving around the Earth: he is crasy, it is batshit, etc. But… yours proved facts against Matrix/DNA Theory are…? I am waiting.

xxxxx

O artigo abaixo tras novas informações sobre a Lua:

Moon’s Iron Core May Reveal Solar System Secrets with X-Ray Scan

http://www.space.com/28900-moon-iron-core-solar-system-secrets.html

– precise knowledge of the structure and composition of the moon’s core is essential for understanding its origin and evolution, which, in turn, would shed light on the birth and development of Earth.

– Based on this seismic data, previous studies estimated the moon had a solid inner core of pure iron and a liquid outer core made of an iron-sulfur alloy, but much about the structure of the lunar core remains controversial.

– in light of these new findings, the researchers suggest the moon’s solid inner core has a diameter of about 310 miles (500 kilometers) and a liquid outer core about 50 miles (80 km) thick. They suggest the inner core is pure gamma iron, while the outer core is composed of iron alloys made up of 3 to 6 percent sulfur by weight.

xxxx

Wikipedia = Origin of the Moon refers to any of the various explanations for the formation of the Moon, Earth’s natural satellite. The leading theory has been the giant impact hypothesis. However, research continues on this matter, and there are a number of variations and alternatives.[1] Other proposed scenarios include captured body, fission, formed together (condensation theory), planetesimal collisions (formed from asteroid-like bodies), and collision theories.

The most widely accepted explanation for the origin of the Moon involves a collision of two protoplanetary bodies during the early accretional period of Solar System evolution. This “giant impact hypothesis”, which became popular in 1984, satisfies the orbital conditions of the Earth and Moon and can account for the relatively small metallic core of the Moon. Collisions between planetesimals are now recognized to lead to the growth of planetary bodies early in the evolution of the Solar System, and in this framework it is inevitable that large impacts will sometimes occur when the planets are nearly formed.

(continuar pesquisa)

xxxx

Outro artigo: 

A new view of the moon’s formation

http://www.eurekalert.org/pub_releases/2015-04/uom-anv040715.php

Now, a team of scientists at the University of Maryland has generated a new isotopic fingerprint of the moon that could provide the missing…

 

A Lua é Um Feto Morto Abortado? Mais uma Evidencia para o Modelo Cosmológico da Matrix/DNA

sábado, dezembro 6th, 2014

xxxx

Study Reveals, Long-Ago Moon’s Magnetic Field Might Have Trumped Earths’

http://www.capitalwired.com/study-reveals-long-ago-moons-magnetic-field-might-have-trumped-earths/27097/

DECEMBER 6, 2014 – BY 

( veja o meu comentário postado no artigo da Capital Wired e copiado abaixo)

Tenho que evitar estes assuntos sobre Astronomia pois estou perdendo um precioso tempo enquanto a Matrix/DNA está me levando a descobertas a toda hora nos campos mais práticos e produtivos da Biologia, Medicina, Tecnologia, etc. Mas todos os dias quando abro o leque na Internet sobre as novidades cientificas do dia anterior, sou bombardeado de imediato por assuntos relacionados à astronomia. E como a desconstrução de uma cultura viciada começa pelo estremecimento das falsas verdades acreditadas por uma equivocada visão deste mundo astronomico, concluo que não posso deixar passar estas oportunidades. Então, paciência: se me chamam para a briga escolhendo o terreno astronomico, eu não fujo desta briga porque, apesar de não ser o campo que mais estou estudando, tambem sei jogar nêle.

A Lua como Feto Abortado por ter caído no Ventre de um Planeta ao invés de uma Estrela – http://www.reddit.com/r/NoStupidQuestions

Enquanto o corrente modelo teórico acadêmico astronomico sugere que a origem da Lua se deve a uma colisão entre a Terra e outro grande astro, o modelo téorico astronomico da Matrix/DNA sugere que a Lua teve a mesma origem de todos os outros astros, ou seja, pelo mesmo processo de reprodução biológica mas bastante reduzido e simplificado devido ser um processo ancestral muito antigo na escala evolucionaria. Segundo esta teoria, quando uma estrela e/ou seu sistema “morre”, ela resulta em poeira estelar que fica girando sobre si mesma devido o movimento de rotação da galaxia. Esse giro produz um rodamoinho no centro da névoa de poeira funcionando como um ralo tapado de uma pia, no qual a água entra e retorna à superfície formando bolhas. Estas bolhas são compostas de material pesado, com mais ferro, em estado altamente energizado, por isso são bolhas incandescentes ( no rodamoinho entram tambem esferas de magmas incandescentes vindos como cometas expelidos por pulsares). As bolhas são expelidas do rodamoinho para entrarem numa zona densa de poeira circundante, a qual se agrega à superfície da bolha. À medida que a bolha se afasta do centro turbilhonar a temperatura no espaço declina e a poeira torna-se cada vez mais congelada por isto sobre a bolha se formam camadas diferenciadas por densidades. Até este ponto, em tudo é igual ao que depois evoluiu para as sementes vegetais e depois ainda para a embriogênese de corpos vivos, onde a bolha representa o germe latente e as camadas externas representam o amnion e a placenta que vão alimentar o germe quando despertar e iniciar suas “reações nucleares” que é sua forma de alimentação pré-natal.

Caindo no espaço interestelar o novo astro vaga sob os efeitos das correntes de forças da galaxia até se aproximar de algum astro com força magnética ou gravitacional para capturar o “menor abandonado, sem família e sem teto”. Se penetra um sistema estelar como o nosso sistema solar, a tendencia do novo astro é ser capturado pela órbita da estrela central que possui força magnética maior que a dos planetas. Ao cair nessa órbita o menor abandonado ganhou uma nova mãe e um teto. Então acontece o mesmo quando pegamos um grão de milho que estava inerte dentro de um saco no celeiro e o introduzimos no solo: primeiro a água incha a semente toda, em seguida penetram os fótons que vieram da estrela e estavam dentro dos átomos da terra até alcançar o germe da semente ( aquela ponta branca que tem nos grãos de milho), o que desperta-o e ele começa a “comer” o envoltório amarelo do grão, que ali foi feito para servir de reserva de alimento ao embrião. Portanto o novo astro tem seu corpo alcançado pela energia da estrela a qual penetra-o alcançando seu núcleo, e assim o astro se torna um planeta, tendo internamente o germe que se desenvolverá e se tornará uma nova estrela.

Nas suas origens, quando a Terra e a Lua ainda eram peraltas vagando livres no espaço interestelar, tinham a mesma face – https://twitter.com/moonemojii

Mas… nem tudo ocorre sempre assim, tal como nas gestações humanas saem fetos defeituosos, ocorrem abortos prematuros, etc. Se o novo astro passar muito perto de um planeta de maneira que a atração magnética deste sobreponha o alcance da atração da estrela, o novo astro cairá nessa órbita do planeta. Passará metade de sua vida sem a luz da estrela, pois terá neste meio-tempo, entre ele e a estrela, um planeta impedindo o curso da energia da estrela. Assim o germe fica entre desperta ou não desperta, como que morrendo varias vezes, até finalmente morrer de vez e tornar-se uma Lua do planeta. Pois a diferença entre estrelas e planetas é que estes são “escuros”, opacos, não irradiam energia como as estrelas.

Um importante fator na constituição de astros é o que se refere a seus campos magnéticos. Estes campos são os espaços ao redor de uma corrente elétrica qualquer. A Terra por exemplo tem um campo magnético gerado pela camada externa de seu núcleo que é composto de uma magma quase liquido altamente incandescente ( lembre-se de como ele surge na superfície em forma de lavas vulcânicas) e cujo “liquido” se move como uma corrente elétrica devido a rotação do planeta. E como então fica essa questão de campo magnético nas “luas”?

Pelo modelo cosmológico da Matrix/DNA publicado e registrado desde a selva amazônica à 30 anos atrás, deduz-se logicamente que as luas apresentaram nos seus primeiros tempos um próprio campo magnético, ora na sua origem quando saiu do vórtice criador e ora nas vezes que quase-despertou pelo recebimento de maior quantidade de energia estelar. Deduz-se ainda que, uma vez estabelecida a morte do “feto” interno destas “luas”, se extingue para sempre seu campo magnético. Isto sugere o modelo. E o que dizem os dados científicos realmente comprovados?

Leia-se o artigo com link acima e estaremos bem informados. Ou seja, o assunto de campos magnéticos de luas ainda não foi resolvido pelo modelo padrão acadêmico ( o Standard Model), mas foram obtidos fortes indícios que ao menos a Lua da Terra já tece em priscas eras um campo magnético, e agora sabe-se com certeza que não tem mais. Estes indícios vem principalmente de asteroides reminiscentes da Lua que apresentam ainda campos magnéticos.

Mas ainda tem um detalhe muito importante a considerar aqui. Dias atrás inserí neste website o artigo:

” A Lua Está Viva… Mais Uma Acertada Previsão da Minha Teoria a 30 Anos Atrás?!” – See more at: http://theuniversalmatrix.com/pt-br/artigos/?paged=2#sthash.fdZ4v3FC.dpuf

Imediatamente o leitor desavisado vai pensar: “Mas então agora tudo o que se descobre ora que a lua é um astro morto ou ora que a Lua está viva – estava previsto por uma unica teoria? Ou uma coisa ou outra…”

É por isso tambem que me desgosta o fato de que a Matrix/DNA, construída dentro da Biologia,  entra inevitavelmente no campo da Astronomia ( pois para mim a Biologia é mera sequencia evolutiva de uma linhagem que passou pela Astronomia), pois a Cosmologia Astronômica ainda é um assunto que beira a metafisica. Ou seja, o Cosmos é tão desconhecido que suas possíveis explicações podem mudar da água para o vinho de um dia para o outro. Tudo ainda é possível em termos de Cosmologia, e isto não apenas em relação ao acadêmico “Standard Model”. Então se num dia sou informado que foi detectado vulcão ativo na Lua e imediatamente corro à fórmula da Matrix/DNA para tentar captar o que ela indica sobre isto, localizo o evento como sendo a Função 3, o que indica que a Lua está em processo vital, portanto, ela ainda está viva. mas no dia seguinte sou informado que a Lua não tem mais o campo magnético que tinha no passado, então corro novamente à fórmula e localizo o evento na Função 2, mas com o corpo saindo fora do circuito vital… e isto indica que a Lua é um feto morto e abortado prematuramente. Nos dois casos o modelo previu uma consequência que foi corroborada pelo pessoal da área cientifica. Como pode ser isto?! Ora a explicação é simples: “Lembre-se que digo aqui que ” o novo astro cairá nessa órbita do planeta. Passará metade de sua vida sem a luz da estrela, pois terá neste meio-tempo, entre ele e a estrela, um planeta impedindo a passagem da energia da estrela. Assim o germe fica entre desperta ou não desperta, como que morrendo varias vezes, até finalmente morrer de vez e tornar-se uma Lua do planeta.” Então, o germe dentro da Lua pode ou estar morto ou ainda com potencial de vida latente, não tenho dados confirmados para decidir isto. Pode estar ainda na fase do “morre durante suas noites e ressuscita durante seus dias”, sendo estes intervalos determinados pela distancia que a Terra esteja do Sol em sua órbita elíptica.

Enfim, meu objetivo não é provar que o modelo que desenvolvi está certo e o concorrente esteja errado. Nosso supremo objetivo é a busca da Verdade. Eu até prefiro ser o perdedor nesta disputa, pois se o modelo em que se estrutura hoje todo nosso empreendimento cientifico e fundamenta a visão de mundo do homem moderno, estiver errado, a Humanidade será prejudicada e mais uma vez atrasada em sua evolução pois teremos que retornar a um ponto no passado, limpar tudo o que fizemos depois pois estará tudo errado, e recomeçar de novo a partir daquele ponto. Como aconteceu quando Copérnico surgiu com o modelo heliocêntrico e tivemos que desmanchar tudo o que fizemos em dois ou três mil anos de crença no modelo geocêntrico. Até hoje ainda não conseguimos limpar os cérebros de muitos humanos de toda aquela falsa mitologia religiosa principalmente para retornar estes cérebros à sua saúde e desenvolvimento sadio de acordo com o que é a realidade natural, do mundo em que existimos e temos de lutar para sobreviver e melhorar a nossa qualidade de vida.

Mas… na ultima possibilidade que o modelo universal acadêmico esteja errado, e portanto as escolas estejam encaminhando os cérebros de nossas crianças para uma equivocada visão do mundo, para que engrossem esta louca corrida que já hoje está sugerindo que podemos estar indo rumo à nossa total extinção, então é melhor que tenhamos agora um pequeno prejuízo, como uma espécie de cirurgia de autocura, para nossa salvação.  E por incrível que pareça, são pequeninos e quase não notados detalhes como esta aparente alienada questão de campos magnéticos de luas, que juntos podem serem nossa salvação, pois o simples fato de estremecer-mos as certezas da visão de mundo estabelecida é uma forma de começar a corrigi-la em seus equívocos. Pois quer queiramos ou não, e depois que vencemos a necessidade de empregar a totalidade da vida apenas na busca de alimentos, todos os comportamentos e atitudes humanas são como ondas disparadas por uma fonte central: a nossa interpretação do mundo total, a imagem pessoal que temos do mundo que domina nossos cérebros e principalmente os cérebros dos humanos que estão no poder e escolhendo os caminhos para nossa grande caravana humana.

xxxx

Textos importantes do artigo: 

– “According to the researchers, the moon once had a magnetic heart, which helped the moon produce a magnetic field stronger than Earth’s now have.”

Matrix/DNA: Sim, todos os astros quando nascem e ainda não tem seu germe nuclear coberto por camadas de fria poeira estelar, emitem forte campo magnético. Ao flutuarem vagando no espaço interestelar têm seu germe nuclear coberto por matéria cada vez mais congelada, o que diminui a intensidade externa deste campo magnético pois o abafa internamente. Este é o estado de planetas como a Terra agora. Porem, à medida que o germe cresce dentro do planeta se aproximando da cobertura superficial, o campo magnético retorna a ser emitido com maior intensidade, alcançando seu climax quando se torna pulsar e depois uma estrela.

– “Though, numerous riddles linger about the magnetic field of the moon, for example, what fueled it and when it’s finished, the researchers added.”

Tradução: ” Apesar da informação na frase anterior, pensa-se nos numerosos enigmas que ainda adiam o conhecimento se, por exemplo, o que alimentou o campo magnético e quando ele se extinguiu…”

– “The moon today does not have an inclusive magnetic field. Nonetheless, asteroids that space explorers gathered amid the Apollo missions proposed the moon once had a magnetic field billions of years back.”

Matrix/DNA: Isto foi dito e registrado à 30 anos atrás pelo que os acadêmicos e estudantes universitários chamaram de semi-macaco troglodita vindo das selvas, quando leram um artigo escrito pelo macaco no jornal “Fôlha de Londrina”.  O macaco não tinha nenhum asteroide para dele tirar sua conclusão, mas esta despontou de seus simples cálculos macáquicos desenvolvidos na sua observação da biosfera amazônica e calculando quem ou o que teria criado sua tataravó biosfera.

– “However, researchers were unsure whether the moon created a magnetic field the same way Earth does, or if the magnetic fields seen on the moon were rather generated by external powers. For example, celestial effects on the moon could have flickered super-heated plasma that produced solid, concise magnetic fields, clarifying the charged rocks the space travelers found.”

Matrix/DNA: Todos os astros são formados com um inicial latente campo magnético, mas são os poderes externos de outras estrelas ou planetas que podem deflagrar ou extinguir tais campos magnéticos.

–  “The crucial inquiry of lunar science for more than four decades, even before the Apollo missions, is to what degree is the moon an unmelted primordial body like numerous space rocks, instead of a dissolved developed body with a multilayered structure, which can have a metallic center with a magnetic field.”

Matrix/DNA: A segunda alternativa está quase correta, salvo pelo indicio de que a Lua não deve ter mais seu campo magnético, ou ainda pode estar em vias de sua extinção.

– “… a few models say the moon began off frosty and unmelted, while others propose it was made from a monster affect and foresee it ought to have been scorched.”

Matrix/DNA: A Lua começou congelada na sua superficie e incandescente no seu nucleo.

– “confirmation that the moon had a magnetic field 4.25 billion to 3.56 billion years back, no less than 1 billion years after the moon created.”

Matrix/DNA: Então o Standard Model sugere que a Lua tem a mesma idade dos planetas do sistema solar. Claro isto é devido a sua teoria da formação destes sistemas, quando todos teriam nascido de uma mesma nebulosa de poeira estelar. Este tópico é ainda um problema para o modelo da Matrix/DNA, que ainda não resolveu se este sistema estelar foi formado pelo processo da primeira geração ou pelo processo das gerações subsequentes.

– ”  Weiss said, “Earth’s magnetic field is presently 50 microteslas in potency. The early moon may have had a magnetic field that was greater, perhaps up to more than 70 microteslas.”

Matrix/DNA: Justamente isto é o que indica o modelo da Matrix/DNA, mas acrescentando que tambem a Terra teve outrora um campo magnético mais potente.

– “It stays questionable what may have fueled this shockingly exceptional lunar magnetic field. “It’s difficult to see how the moon’s magnetic field could be as tough as it appeared given how the moon has a little center,” Weiss said. “The moon’s center is perhaps 1/5 to 1/7 the radius of the moon, while the Earth’s center is possibly one-half the planetary range. This implies the surface of the moon is much far from its center than you see with Earth. Since magnetic fields fall quickly in force with distance, it’s tricky to see how the moon could have had a magnetic field that was that that tough throughout its surface.”

Matrix/DNA: “Minha Santa Erotilde dos torresmos fritos!”. Isto é tão fácil de resolver! Claro, é facil quando temos o modelo da Matrix/DNA como base. Todos os astros no céu, quando nascem, são ancestrais dos bebes humanos que nascem na Terra. E todo mundo sabe que bebes nascem pequeninos e se tornam adultos grandões. Nos bebes a distancia entre seus coraçõezinhos e sua pele superficial é menor que nos adultos a distancia entre seus “coraçãozões” (Arre! Este português me obriga a fazer cada ginastica de língua que um dia ela se dá um nó e morro sufocado!)…, e sua pele superficial. Claro! Então tanto a Lua como a Terra, nos seus tempos de infância, que eram como uma semente, tinham seu nucleo-germe altamente concentrado e rotativo, gerando intenso campo magnético, que era externalizado com potencia porque tinham ainda poucas ou menos camadas geológicas abafando essa força que têm agora. À medida que o germe se expandia, diminuia a sua densidade e com isso a força de seu campo magnético.

– “Given the extent of the moon — just around a quarter of Earth’s distance — the moon ought to have cooled hastily…” 

Matrix/DNA: Temos um problema aqui, entre nossas teorias. Pelos meus cálculos, a Lua deve ter recebido menas camadas geológicas que a Terra e estas eram ainda mais quentes que as ultimas camadas da Terra. A Lua teve estas camadas esfriadas ou mantido a temperatura mais fria inicial devido ao mesmo motivo pelo qual a superfície do nosso planeta não pega fogo pelo bombardeio solar: quando ela se esconde do Sol por estar nas costas da Terra, o que o faz na metade de seu tempo de existência, funciona como as noites terrestres que esfriam o calor aumentado durante o dia.  Então não teria havido esfriamento rápido da Lua. Mas isto é um assunto onde não vejo muita importância para se discutir.

 “Though, novel models propose that the moon’s innards may have been less gooey than suspected, and that radioactive material inside the moon could have kept it hotter. These elements may have empowered a convection-fueled lunar dynamo to last until maybe 3.5 billion or 3.4 billion years ago.”

Matrix/DNA: Justamente o que sugere nosso modelo. Enquanto o germe se torna feto o campo magnético continua, mas quando o feto morre, o campo se extingue. Isto sugere que o feto “morreu” entre 3,5 bilhões ou 3,4 bilhões de anos atras. Eu vou calcular isso direitinho porque preciso saber a data, o dia exato que o feto morreu, para estabelecer a o dia da missa em sua sagrada memória…

Comentario publicado pela Matrix/DNA no artigo:

“… the moon once had a magnetic heart, which helped the moon produce a magnetic field stronger than Earth’s now have.”

It is just what was predicted by Matrix/DNA astronomic model, 30 years ago. All astronomical bodies have stronger magnetic fields at its formation and it decreases till these bodies becoming old planets or, like moons, are aborted as died fetuses. But, accordingly to this model, the body’s nucleus is seen as a germ, not as a heart.

Though, numerous riddles linger about the magnetic field of the moon, for example, what fueled it and when it’s finished, the researchers added.”

It is the same cause that fueled the magnetic field of Earth at its infant times. These nuclei are formed with degraded mass as stellar dust from a died system plus highly energetic concentrated ironess magma coming from neighbours system or pulsars. The nucleus emits stronger magnetic field forces while the astro-baby is crossing the dust, which are aggregated upon the nucleus building the geologic layers. Which makes the decrease of that superficial force and if the astro does not fall directly into a star’s orbit and does not receive its energy, the germ dies, finishing the magnetic field.

“… if the magnetic fields seen on the moon were rather generated by external powers.”

Astronomic bodies, while at their formation, are the ancestors of vegetable seeds. Or does you think that vegetable seeds were created by magics from a divine superpower or by magics of an ex-machine-maker randomness? It is all about a unique line of evolution, from cosmological to biological. So, when we have a question about these emerging astros we can search the answer observing a vegetable seed or human embryogenesis. There is a potential magnetic field freezed at the germ, which is triggered by the energy of a star. But if instead a star, the “baby-astro” falls into a planetary orbit, the germ is waked up during the day and almost dues during the night, or when it is at the other side of the planet.

Ok, by while it is theory against theory, only time and more data will be judge about which model is less wrong.

 

A Lua Está Viva… Mais Uma Acertada Previsão da Minha Teoria a 30 Anos Atrás?!

terça-feira, novembro 25th, 2014

xxxx

A Lua tem sido considerado pelas ciências acadêmicas como um objeto morto, mas recentes descobertas vão obrigar os educadores a mudar os textos do curriculum escolar. A Lua tem vulcões em atividade! Em que isto pode nos afetar na Terra? Vai cair lavas chamejantes aqui? O astro que foi indispensável para formar a Vida aqui, pode tambem matar o que ajudou a criar?!

Dentro da Matrix/DNA Theory esta noticia causou uma certa satisfação e ao mesmo tempo, muito mais assuntos a pesquisar. os meus modelos cosmológicos nunca concordaram  com a teoria acadêmica sobre a formação da Lua, mas como tenho o problema de não saber se este sistema solar pertence ás primeiras ou posteriores gerações – o que muda o tipo de formação – tenho ficado quieto e acompanhado as noticias à distancia. Seja pelo primeiro ou segundo processo, a Lua – segundo o modelo da Matrix/DNA – deve ser um astro-baby com as mesmas características das demais formas de astros, como planetas e estrelas. Se for realmente assim, a Lua deve ter um núcleo que funciona como o germe de uma semente, por exemplo, um grão de milho. meste grão vemos uma ponta branca e o resto amarelo, sendo a ponta branca o germe e o resto a placenta que vai nutrir o germe quando o grão for plantado debaixo da terra. Assim a água no solo incha a semente para que partículas da energia do Sol que penetram a terra possa alcançar o geme e desperta-lo, dando-lhe vida. Ora a Lua está em órbita no Sol, recebendo sua energia, que deve estar alcançando seu núcleo e portanto, provocando as primeiras reações nucleares que correspondem ao germe comendo a placenta, reações que produzem gases e pressão interna, a qual precisa cavar válvulas de escapes, os quais são os vulcões. Na selva amazônica onde a visão do céu é magnifica, as noites solitárias olhando aquela lua maravilhosa, e mais a influencia da visão do mundo proporcionada pela teoria da Matrix/DNA, eu reverenciava a lua e as estrelas de uma maneira diferente. As estrelas eu defini como “atarefadas mães celestes em amamentar seus rebentos planetas e luas com seu néctar energético e preocupada em mantê-los aquecidos e protegidos dentro debaixo de suas longas asas gravitacionais… como quando vejo a galinha com seus pintinhos debaixo de suas asas… E como minha teoria sobre as origens da vida é diferente, essa teoria apontou que apenas quando a Lua surgiu no céu da Terra vinda de outros rincões celestes, foi possível imitar o turbilhão da formula da Matrix  que mistura ingredientes para formar novos compostos, e a Lua fez isso ao agitar os oceanos com as marés, misturando a água com a poeira das rochas na praia… o que possibilitou a emergência das primeiras moléculas orgânicas. Portanto, a Lua, para mim, sempre foi merecedora de todo respeito. Mas… tudo é teoria e temos muito que pesquisar ainda.

Veja este interessante vídeo ( e meu comentario abaixo postado no video):

https://plus.google.com/u/0/102371865054310418159/posts/TsEyg3r5BHm?pid=6085738205104423826&oid=102371865054310418159

The Matrix/DNA cosmological model suggested 30 years ago that this must happen. The moon is another astronomical body like any others, only it is at the evolutionary shape of astro-baby. So, astros have their nucleus as the evolutionary ancestral of the plants seeds germs, which are wake up when the Sun’s energy reached them, and begins the nuclear reactions like when the germ begins to eat the nutrients of the surrounding amnion/placenta. These nuclear reactions produces gases and internal pressure that builds valves for escaping, which are the volcanoes. Yes, the Moon is alive, as I am saying in the last 30 years…

Forte Magnetismo nas Rochas da Lua: Outra Previsão Acertada Pela Matrix/DNA?

quinta-feira, novembro 17th, 2011

xxxx

Rochas colhidas pelos astronautas da Apollo na LUA surpreenderam os cientistas: estiveram fortemente magnetizadas! Mas na teoria reinante não existe explicação como a Lua, a 4 bilhões de anos atrás, na sua formação, possuía um forte campo magnético, e muito menos explicação para o fato de que êle desapareceu. Porem, correndo a olhar o modêlo cosmológico da Matrix/DNA, sôbre a formação dos astros, para o caso dos tipos como as luas, êle sugere claramente que elas nascem fortemente magnetizadas e logo perdem o magnetismo. A tôda hora, a todo dia, estamos sendo bombardeados com evidências comprovando êste modêlo e estas mesmas descobertas obrigando a comunidade astronomica a refazerem o modêlo oficial. Até quando?!

A seguir, dados sôbre o artigo, um breve comentário explicativo da Matrix/DNA, e por fim, um comentário nosso enviado ao divulgador do artigo.

LUA

What Stirred Up the Moon’s Ancient Magnetic Field?

By: Jenny Marder

SCIENCE — November 15, 2011 at 12:10 PM EDT

http://www.pbs.org/newshour/rundown/2011/11/what-stirred-up-the-moons-ancient-magnetic-field.html

PBS NEWSHOUR

http://www.pbs.org/newshour/

XXXX

Explicação do Modêlo Cosmológico da Matrix/DNA

Todos os astros são concebidos e desenvolvidos até sua forma embrionária pelo e dentro do Vórtice que é formado pela rotação da poeira estelar de uma estrêla ou sistema estelar morto, desfeito. Visualize esta expliçação nas figuras abaixo: o Vórtice é a Função 1, a estrêla ou sistema morto é a Função 7, e a poeira estelar resulta da fragmentação de F7 e circunda F1.

O Vórtice é altamente magnetizado pois o que causa a rotação são as linhas de fôrça magnéticas da espiral galáxia, êsse magnetismo passa a matéria incandescente dos astros em formação. Ao serem ejetados do Vórtice, ou mesmo ao se verem livres no espaço porque o Vórtice se desfaz, estas esferas incandecentes se encontram em meio à poeira restante circundante, a qual os vai cobrir e formar as camadas de rochas geológicas. Entramos na Função 2. Mas em cada ninhada de astros, alguns abortam prematuramente, outros tardiamente, outros ainda defeituosos, como ocorre em qualquer ninhada de aves ou animais na Terra. Êstes restos, quando são poeiras e pequenos blocos de rochas, vão formar cinturões nas fronteiras do novo sistema, como é o Cinturão do Sistema Solar. Se são maiores, recebem as primeiras coberturas de poeira congeladas mas não possuem massa suficiente, ou por outro motivo qualquer, para orbitarem a estrêla e estacionam sendo capturados numa órbita de algum planeta. Formam o que denominamos de Luas. Se tivessem desenvolvido normalmente, como o planeta Terra, que rapidamente se alinhou em órbita ao redor da estrêla, a energia desta alcança seu nucleo, ativa suas reações nucleares, e o magnetismo nuclear é mantido influenciando mais as camadas próximas do nucleo. No caso das Luas, a falta do estimulo da energia estelar faz o nucleo tambem congelar ou se solifdificar e morrer, sendo que o seu magnetismo inicial praticamente se evapora, com uma parte dêle ficando incorporado nas rochas de superficiie, Foi isso que os astronautas da Apollo encontraram.

Como digo no comentário abaixo, enquanto os homens e mulheres que exercem autoridade acadêmica sôbre as Ciências Naturais Humanas desta época não entenderem que quem fêz a Vida aqui na Terra foi a própria Terra e sua estrêla e portanto só podem terem feito o primeiro sistema celular à imagem e semelhança do sistema que êstes astros pertencem, enquanto não descobrirem que pais de peixinho, peixes parecerão, … estaremos f…. com bilhões de crianças nos bancos escolares tendo suas indefesas e ingênuas mentes sendo desviadas da verdadeira natureza dêste mundo, até acabar-mos com o planeta porque não soubemos o que fazer com êle porque não o conhecíamos de fato! A não ser que você desperte e não me deixe nessa luta sózinho…

Raios! A Terra, o Sol e a Lua dêles jamais poderia ter gerado a Vida aqui. Tanto que êles se perdem totalmente quando inquiridos a explicar as origens da Vida. Enquanto isso, a minha Terra, o meu Sol e a minha Lua não podiam ter outro destino evolutivo senão o de gerar a Vida na Terra. Estão aí os calculos, os desenhos de suas anatomias, até o croquís da mente que mais tarde aqui criaram, as suas histórias, os seus ciclos vitais completos, desde seus nascimentos às mortes de seus ancestrais. Como qualquer um pode ver, a minha Galáxia é a cara e o fucinho do primeiro nucleotideo do primeiro RNA, e tem a mesma forma da sua neta, a célula vital. Até a face humana, com nariz, boca, dois olhos, orelhas em espiral, está claramente visivel na forma da minha galáxia. Inclusive o olho esquerdo da galaxia, um astro luminoso porem pequeno, recem-nascido, é tão míope como o da maioria dos humanos, porque seu olho direito, muito maior, luminoso e potente que é uma estrêla exuberante está projetado como o olho direito saudavel humano. o que precisa mais? O que querem mais ainda? Não sabem nem explicar como é e como funciona a galáxia dêles como sistema…

xxxx
Comentário Postado pela Matrix/DNA no artigo:

From: Louis Morelli

The process of origins of astronomic systems was ancestral to the process of origins of biological systems. Them, the process is the same, same laws, same mechanisms. The schollar scientific cosmological model must be wrong because there is no evolutionary link between the state of the astronomical world and the biological systems they produced. The Universal Matrix/DNA Theory about 30 years ago already calculated a cosmological model in this way and yes, the model did the prevision that moom must had a strong magnetic field. But, the causes are very surprising…

Matrix/DNA em Galaxias, Nucleotídeos e Células Vitais

xxxx

LUA: Teoria Oficial da Origem da Lua por Colisão é Criticada

quinta-feira, novembro 10th, 2011

Young Earth had crusty magma ocean

Thursday, 1 April 2010

by Heather Catchpole

Cosmos Online

http://www.cosmosmagazine.com/news/3379/young-earth-had-crusty-magma-ocean

Texto do Artigo:

Moon formed from semi-molten dumbbell?

The theory has implications for the birth of the Moon – instead of forming when an object the size of Mars struck the early Earth, as many scientists believe, the Moon-Earth system may simply have split apart from an original semi-molten, dumbbell-shaped body, he says.

“My arguments are way-out but should stimulate fresh thinking,” McCall told Cosmos. “The collision hypothesis is entirely based on computer modelling, and there is no real evidence that these wandering planet impactors, cited in the case of Mercury and Mars as well as Earth/Moon, ever existed.”

McCall’s ideas are somewhat controversial among geoscientists.

The controversial new theory, proposed by UK-based Australian geoscientist Joe McCall is published in the current issue of the Australian Journal of Earth Sciences

A FACE DE LUCA – O Verdadeiro Adão/Eva Que Caiu do Céu

quinta-feira, agosto 18th, 2011

The ” Last Universal Common Ancestral”

>> O Deus caido do Paraiso e Criador da Vida na Terra <<

Há 200 anos, desde a fantástica idéia de Charles Darwin, um exército de neo-darwinistas atacando em tôdas as frentes ( da biologia molecular à geologia ), tem revirado a lama de pantânos e o lôdo do fundo de oceanos à procura da criatura microscópica que teria sido o elo entre o mundo inanimado e o mundo dos seres vivos. Denominado “LUCA”, sigla inglesa para “Last Universal Common Ancestral”, êste se tornaria o personagem provocador da maior revolução no pensamento de um filósofo naturalista, quando, em uma solitária incursão nas regiões mais longinquas e selvagens ainda intocadas da Selva Amazonica (ultima testemunha ainda virgem dos eventos nas origens da Vida ), observava os sistemas naturais e aplicando o método da anatomia comparada entre sistemas vivos e inanimados, foi obrigado pelas pistas e evidências acumuladas a levantar os olhos para o céu e, deslumbrado, ver a… face de LUCA. 

Agora observando a figura desta face entendemos que LUCA foi e continua a ser a obra da Natureza mais espetacular de todos os tempos! Êle é uma máquina perfeita, um verdadeiro moto-continuo, porem êle morre como qualquer outro ser mortal. Êle existe mas não existe ao mesmo tempo. Ele contem uma estrutura como a do DNA, como qualquer outro ser vivo, mas não se trata do DNA.

Na figura a seguir mostramos um retrato falado desse ser que ainda nos dias de hoje é um dos mais influentes sobre nossas vidas:        

LUCA - The Last Common Ancestral

LUCA é um PROTO-SISTEMA formado por um unico corpo (astro) que se transforma pela ação do CICLO VITAL .  LUCA é a unidade fundamental (building block) das GALÄXIAS, e reproduz-se microscópicamente como NUCLEOTIDEO, o building block ou unidade fundamental de informação do RNA e DNA.

Para entender quem é LUCA e como ele “desenhou” nossa existencia, precisamos antes recordar o que é ciclo vital, e vamos tomar como exemplo, o humano.

Ciclo Vital Humano pela…

“Teoria da Matriz Universal dos Sistemas Naturais e Ciclos Vitais”

Nesta figura o Ciclo Vital usa apenas um corpo (hermafrodita) para formar um protótipo de sistema natural completo. A Natureza nunca cria do nada diretamente alguma coisa, antes ela faz experiências com formas mais simples, ensaios, protótipos, só então finalmente os fixam como existentes. Por exemplo, antes ela fêz corpos simples, como átomos e astros, e os pôs a rolar sob o processo de um ciclo vital, e só então ela fixou o circuíto sistêmico daí resultante como o primeiro sistema vivo, o sistema celular. Para entender o que é o LUCA que existe mas não existe, é preciso lembrar um retrato falado de todo corpo humano  tal como o meu e o seu, quando nós tambem existimos em relação a um ponto no tempo e espaço, mas não em relação às totalidades do tempo e espaço. Não é possível a você entender quem foi meu avô se eu apenas lhe mostrar uma foto dêle e numa casa. Se a foto era dêle quando bebê, você não consegue fazer idéia de como êle era quando adulto, e vice-versa. Tambem se a cidade era de quando êle tinha 10 anos você não consegue ver seus movimentos e lugares quando estava com 50. A explicação está num fenômeno descoberto por um cientista genial, da Fisíca, o grande Heisenberg: se você fixa uma partícula num ponto do espaço para medir volume, definir sua forma, etc., não consegues medir sua velocidade, idade, etc., e vice-versa. Isto porque as partículas foram nossas ancestrais, portanto as propriedades do ciclo vital já estavam existindo nelas em seus principios mais simples. Como consequencia desta Lei, o mundo, num dado momento qualquer, só pode ver seu corpo como criança ou então como adulto, nunca as duas formas ao mesmo tempo. LUCA é assim: enquanto visto numa forma e idade apenas podemos estar vendo um planeta ou um pulsar que não explica como êle pode ter sido nosso ancestral, mas se visto em tôdas as suas formas e lugares fixos numa só figura ou filme, aí sim, entendemos tudo. Por isso nunca ser humano algum tinha visto LUCA, quando na realidade é impossivel deixar de vê-lo a cada momento que abrimos os olhos!

Isto acontece porque nêste mundo material que existimos, desde as origens do Universo a Natureza tem se esforçado em organizar a matéria em sistemas cada vez mais evoluídos. Para tanto ela usa uma fórmula invisivel, como é o software que opera o hardware de seu computador, ou a mente que dirige seu corpo à ação. Vejamos essa fórmula, á qual denomino de “A Matriz Universal”:

DIAGRAMA DO PROTO-SISTEMA “LUCA” - The Last Universal Common Ancestral

Mas a vida é assim. Milhões viram maçãs caindo mas apenas Newton se perguntou: “Why?!” (Porque?!). Da mesma forma, milhões já viram gravuras de uma célula vital, que foi o primeiro ser vivo realmente completo, todos vêm que a célula é um sistema e não uma parte, mas apenas um filósofo isolado na selva estudando sistemas teria a pachôrra de passar as noites solitárias se perguntando: “Why?!” – ” Por que um sistema? Se o planeta que a gerou é uma parte e não um sistema, como podem partes gerarem sistemas? Ou não terá sido apenas a Terra, e sim o sistema a que ela pertence? Mas então como será êste sistema?!”

Existir como parte e não existir como sistema ao mesmo é uma consequencia do que se denomina “Ciclo Vital”: os corpos mudam, tem suas formas transformadas a cada milionésimo de segundo, ou seja, em cada menor fração de tempo possivel ele perdeu ou recebeu pelo menos alguma nova particula. Observe novamente a figura do ciclo vital humano: 

… Um dêsses microbios que vivem apenas algumas horas dentro de um corpo humano, jamais acreditaria que o corpo-universo onde êle existe muda tanto de forma, a ponto de um baby tornar-se um ancião de bengala na mão. Qualquer deles juraria que o corpo humano surge da forma que êle e milhares de suas gerações o conhecem. Nós somos como micróbios em relação ao tamanho e tempo do Cosmos. Vai daí que acreditar na teoria da geração espontanea dos astros foi um passo racionalmente lógico, como foi a crença na geração espontânea da Vida pelos pensadores gregos. Pois nós estamos a milhares de anos vendo as formas de astros no céu, e agora podemos vê-los com potentes instrumentos, e ainda estamos cometendo o mesmo tipo de êrro lógico grego. E na escola nossas crianças são ainda ensinadas que cada forma de astro celeste surge por geração espontânea, ao acaso – como efeito direto de uma nebulosa de poeira estelar!

Mas… segure-se na cadeira: êles são tão vivos quanto nós somos, nêste aspecto. As cinco ou seis formas diferentes de astros que conhecemos… são as formas de morula, embrião, baby, criança , adulto, e até a forma do cadaver, de um unico astro! Os astros  – apesar da aparente forma esferica sem maior significado, tambem nascem, crescem, tornam-se sexualmente ativos, se reproduzem, tornam-se anciãos e morrem como cadaveres!

Qual seria a verdadeira foto sua, se um pretendente extraterrestre na Internet espacial lhe pedisse? Se mandasse uma atual, não iria lhe dar muita informação sobre como e quem és. Se mandasse uma na forma de baby…ia piorar as coisas para o deslumbrado extraterrestre. Enfim, a verdadeira e correta foto para uma inteligência de outro mundo entender e conhecer a espécie humana teria que conter ao menos suas sete formas principais e dar alguma pista mostrando que uma se transforma na outra. Mas nós somos inteligencias de outro mundo em relação às especies astronomicas… Entendeu? Nós nunca olhamos antes para nossos tata-tataravós que estão no céu com o olhar do entendimento. Nunca nos apercebemos dêle, o qual gerou nossos ancestrais biológicos mais primitivos, o qual está à nossa volta por todos os lados que nos viramos, do qual existimos dentro de seu corpo, enquanto êle está dentro de nós, inscrito e registrado no nosso código genético… e nem sabíamos que ele existe!  

De fato, que algum dia pudesse passar por uma cabeça humana a idéia de que planetas se transformam em pulsares e êstes em estrêlas, que um pulsar é “marido” de uma “quasar”, que astros despejam no espaço óvulos e espermatozóides como algumas criaturas primitivas despejam nas águas dos oceanos… parece mesmo coisa de louco! Mas tambem pareceria louco aos olhos de todos os micróbios que vivem dentro de um corpo humano adulto hoje e tivessem vendo por um poro da pele um baby distante num berço, o micróbio que dissesse que aquêle corpo em que estão foi um baby no passado… Não se precipite rindo de mim, pois muitas são as armadilhas no nosso caminho preparadas pelo relativismo do tempo e espaço.

(Bem, continuaremos a falar de LUCA nêste artigo voltando aqui sempre que nesta vida quase sem tempo sobre algum tempo e haja mais alguma novidade…)    

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Pesquisa Sôbre LUCA – Obs: Notar que na categoria LUCA existem vários diferentes artigos que precisam ser reunidos numa só pagina.

 – Artigos relacionados:

Bom site para se atualizar sobre LUCA: http://www-archbac.u-psud.fr/Meetings/LesTreilles/LesTreilles_e.html

xxxxxxxxxxxxxxxx

ActionBioscience.org 

http://www.actionbioscience.org/newfrontiers/poolearticle.html#getinvolved       

What is the Last Universal Common Ancestor (LUCA)?

Anthony M. Poole

LUCA, the last universal common ancestor, is still an enigma but scientists have been able to:

  • find more answers in the genetic code
  • revise and reconstruct evolutionary trees
  • understand more about the role of gene swapping in evolution 

Cells are so small that even a cluster of these cells from a mouse only measures 50 microns. Image from wikibook Cell Biology textbook, John Schmidt.

In the study of early life on Earth, one name towers above the rest: LUCA. LUCA is not the name of a famous scientist in the field; it is shorthand for Last Universal Common Ancestor, a single cell that lived perhaps 3 or 4 billion years ago, and from which all life has since evolved. Amazingly, every living thing we see around us (and many more that we can only see with the aid of a microscope) is related. As far as we can tell, life on Earth arose only once.

Answers in the genetic code

Life comes in all shapes and sizes, from us humans to bacteria. So how do we know that all life has evolved from a single cell? The answer is written in the language of the genetic code 

The genetic code spells out DNA.

  • The genetic code is the language in which most genes are written into DNA.
  • Such genes are recipes for making proteins.
  • Proteins are what make the cell tick, doing everything from making DNA to digesting the food we eat and extracting the nutrients.
  • Incredibly, the exact same code is used in humans and bacteria, so a gene from a human being can be put into a bacterium, and the bacterium will make the human protein — this is how insulin is made.

The genetic code is universal for all life.

That the genetic code is universal to all life tells us that everything is related. All life regenerates itself by producing offspring, and over time small changes in the offspring result in small changes to the protein recipes. But because the recipes are written in the same language (the genetic code), it is possible to compare these recipes (and other genes) to build the equivalent of a family tree.

Family trees

The tree of life explains relationships among all living things.

In this way, biologists have succeeded in making the mother of all family trees — the tree of life. The tree aims to establish the relationships between all living things, and has already revealed some surprises. Most striking is the discovery of the archaea (image B).1 These are simple organisms that, to look at them, are indistinguishable from bacteria (image C). 2 Before the prototype tree of life was built in 1977, it was thought that life had two major branches, the eukaryotes (e.g., plants, animals & fungi) and the prokaryotes (bacteria, and what are now known as archaea). The decision to split life into two branches was largely based on the visual difference between cells. Eukaryotes all possess a cell nucleus while prokaryotes  don’t. But despite appearances, archaea and bacteria are as different from one another as either is from eukaryotes. So, the tree of life is now known to consist of:

  • Archaea
  • Bacteria
  • Eukaryota

It is astounding that as recently as 25 years ago we were blissfully unaware that we and bacteria shared the planet with a third form of life!

Reconstructing LUCA

Which features of the archaea, bacteria, and eukaryotes can be traced to LUCA?

The tree of life is without doubt one of the great achievements in biology (image F). But for some researchers it is merely a means to an end. These researchers are trying to reconstruct LUCA, the cell from which all life has evolved.3 The question they are asking is, “which features of the archaea, bacteria and eukaryotes can be traced back to their common ancestor, LUCA?” This should be a very simple task — simply compare all three groups and choose the features that are common to all. By rights, LUCA’s reconstruction should be a done deal what with 70 or so complete genomes across the whole tree having been deciphered. (A genome houses all the genes in an organism, and a ‘catalogue’ of these genes is obtained by sequencing the organism’s DNA.) Unfortunately, it’s not that simple, for two reasons:

  • genes get lost
  • genes get swapped

How can we tell if a gene is ancient?

DNA provides clues to the age of a gene.

  • The implication of genes being lost is that when we compare genomes to see which genes are common across all life (that is, which are ‘universal’), we underestimate how many genes were originally in LUCA. Some of the genes that are not universal can be added to LUCA because clues to their origin can be found by looking at what they do. While we can make an educated guess as to whether a non-universal gene was in LUCA, most genes that are not universal are probably ‘new inventions’, specific to one of the three major branches of the tree. In fact, many may only be specific to one small group of, say, the archaea.
  • Another way to check if a gene is ancient is to look at whether it is a recipe for protein or RNA. This is an important clue because some RNAs date back to an even earlier period than the time when LUCA lived. The logic goes thus: if an RNA is older than LUCA, then LUCA had it too, even if that RNA is no longer universal.While dealing with gene loss is tricky, it is not an insurmountable hurdle — it just means reconstructing LUCA will be peppered with a lot of educated guesswork, and probably a few gaps. But gene swapping is another matter altogether — it threatens to fell the tree of life, and consign LUCA to the dustbin.

Horizontal gene transfer is another term for gene swapping.

Gene swapping (or horizontal gene transfer as it’s often called by biologists) has been known about for decades. What biologists are only now beginning to look at is the extent to which genes are transferred between organisms. Comparing two bacteria from the same species reveals major differences.9 For example, Escherichia coli is a common gut bacterium that is part of our natural gut flora. But the O157:H7 strain causes severe gastrointestinal ailments. The genomes of both a harmless variant (K-12) and the O157:H7 strains have been deciphered and compared, and the result is striking.

  • 1387 of the 5416 (26%) genes in O157:H7 are not in K-12.
  • 528 of K-12’s 4405 (12%) genes are not in O157:H7.

Many of the O157:H7 genes are arguably foreign genes that have been borrowed from elsewhere. If we compare two people, or even a person with a chimpanzee, there’s nowhere near this kind of variation — humans all share the same genes, and humans and chimps may well have only a handful of genes that are different between our two species.

On a broader level, a now famous comparison of Escherichia coli K-12 to Salmonella enterica (another species of bacterium often responsible for food poisoning) concluded that:

  • At minimum, 17% of the K-12 genome has been borrowed since these two bacteria split from a common ancestor around 100 million years ago.10
  • LUCA would have roamed the Earth 3-4 billion years ago, so if all genes are so easily swapped, any evidence for LUCA would have effectively been scrambled because genomes are so severely shuffled.6

Not all genes are equally swappable.

So where does this leave LUCA? A pessimist would say that LUCA is out of reach. However, it is far from obvious that all genes are equally swappable. Some, like genes for antibiotic resistance, are the gene equivalent of gypsies:

  • when there is antibiotic present, they provide a bacterium with resistance11
  • once the antibiotic disappears, they too are often lost

Other genes produce proteins that lock together with other proteins into large protein complexes, much like a 3D jigsaw. The ability for one jigsaw piece to be swapped with the equivalent jigsaw piece from another organism will depend on how similar the jigsaws are. Escherichia coli K-12 and O157:H7 could probably exchange such genes with relative ease, but a bacterium and an archaeon probably wouldn’t have a hope of doing so, even though such jigsaws perform the same biological role.12 Is gene swapping as common across other branches of the tree? We animals don’t tend to swap protein recipes like bacteria do, but we have done this in the past. There is now overwhelming evidence that we are part bacterium.13,14

Evidence indicates gene swapping in human DNA.

  • Our bacterial ancestry comes in the form of mitochondria  tiny power plants housed in our cells.
  • The DNA of your mitochondria is miniscule, with only a handful of genes. But mitochondria were once full-blown bacteria that took up residence in and struck up a partnership with one of our distant single-celled ancestors.
  • Since then, much of the DNA from the original bacterium has been thrown away, but a lot of it has ended up in the DNA of our nucleus.

The good news for LUCA biologists is that we seem to be pretty successful at identifying which bits of our nuclear DNA came from the mitochondrion, and which bits were already there. So to some extent, it might be possible to disentangle parts of the tree of life. But is it enough to save LUCA?

One or many LUCAs?

Carl Woese suggests there may be more than one LUCA.

Carl Woese, one of the key players in the bid to reconstruct the tree of life, has added another twist to the LUCA puzzle. He has got researchers fired up by suggesting that:

  • LUCA was also into gene swapping, and on a much larger scale than what we observe in modern bacteria
  • gene swapping was once more important than inheritance from parent to offspring, and that early archaea, bacteria and eukaryotes each emerged independently from a ‘sea’ of gene transfer8

It’s not clear how his claims could be tested, but they are certainly food for thought — if he’s right there never was a single LUCA, but more of a community of genes loosely associated with cells.

Conclusion: LUCA is still a puzzle but science continues to find pieces of the puzzle.

The jury is still out as to how to reconstruct LUCA, and whether horizontal gene transfer will turn this task into a futile one. However, if not all genes are equal in the game of horizontal gene transfer, biologists stand an outside chance. Either way, there are plenty of exciting challenges, and many unknowns for those trying to build the tree of life and reconstruct our origins. For instance, just this year a member of a new group of microscopic archaea has been identified from a deep-sea trench.15 To give you some sense of perspective as to the significance of this discovery, it is roughly equivalent to discovering the first plant! Whether there was one or many LUCAs, these are definitely exciting times.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  

My Name is LUCA – The Last Universal Common Ancestor

Anthony Poole

Looking down a microscope at a human cell, there is not a lot that it seems to share in common with a bacterial cell. But just as linguists have been able to establish that all human languages have a common origin, so it turns out that all cellular life has a common origin. The ancestor of all life on Earth today has been dubbed LUCA, short for Last Universal Common Ancestor. The fact that there must have been a LUCA was first made clear in the 1960s when the genetic code was deciphered and found to be universal. Almost forty years since the code was cracked, the emphasis is now on trying to reconstruct LUCA, but the emerging picture is substantially complicated by new insights into the evolutionary history of life.

1. Introducing LUCA

LUCA is short for Last Universal Common Ancestor, and it is from this organism that every living cell on the planet has descended. LUCA does not represent the earliest stage in the evolution of life — it is widely accepted that before the evolution of proteins and DNA (which are common to all cellular life) there was a period where RNA carried out the roles now performed by proteins and DNA [Jeffares & Poole 2000]. There are a lot of uncertainties when we go this far back in evolutionary time and perhaps all we can be certain of is that, at a point in Earth’s history (probably over 3 billion years ago), cells emerged which stored recipes for making both proteins and RNA on a third molecule, DNA.

Nevertheless, studying LUCA is not science fiction. In the same way as humans and chimpanzees shared a common history until less than 10 million years ago, all modern lifeforms shared a common history back as far as the split that gave rise to the three ‘domains’ of life we now know of as archaea, bacteria and eukaryotes; that is, back as far as LUCA. That there are three domains was first established by Carl Woese and colleagues, who found that the group called prokaryotes was actually two groups, the archaea and bacteria [Woese & Fox 1977; Woese et al. 1990]. Amazingly, this work has largely stood the test of time, and though it is argued that there has been extensive gene swapping between these two groups [Pennisi 1998, 1999; Doolittle 1999; Eisen 2000], recent analyses using complete genomes supports Woese and colleagues’ decision to split prokaryotes into archaea and bacteria [Snel et al. 1999; Sicheritz-Pontén & Andersson 2001; Brown et al. 2001].

Woese and colleagues’ discovery rested on an even more astounding one — all life stores its genetic information on DNA, using a common code which we call the genetic code. The information is stored as packets, called genes — recipes for making RNA, and proteins. The languages of DNA and RNA are so similar they may as well be called dialects, but both are markedly different from the language of protein.

Mais um ponto para Matrix/DNA: As informações estocadas no RNA e DNA tem que serem semelhantes porque ambas traduzem o circuito do sistema na exata posição em que se encontra cada ponto do circuito. Já as proteínas são amalgamas de pontos do circuito sem reproduzir a sequência do circuito

 For RNA and DNA, the information-carrying part of both molecules is made up of four bases (analogous to letters in an alphabet) read in a linear fashion, as with written human languages. In RNA, the four bases are A, G, C and U. In DNA, A, G and C are also used, while T is used instead of U. Establishing the evolutionary basis for this change from U to T is not a trivial exercise, and is an interesting problem in itself [Poole et al. 2001]; but in terms of the actual language, the difference is as minor as the variant spelling of English words, e.g., civilisation and civilization.

Segundo a Matriz/DNA esta diferença é muito importante. U representa a F5 que é a função do ramo lateral responsável pela metade da reciclagem do sistema. Se quando a face esquerda de LUCA, representada biológicamente como RNA, replicou-se construindo seu lado direito, tivesse mantido U, o DNA seria um sistema fechado em si mesmo, e se o primeiro par de nucleotídeos pudesse se replicar, todos os outros milhões de nucleotideos seriam exatamente iguais, ou seja, não haveria um código maior do que um unico bit de informação. Então, para F4 não produzir F5 no momento da origem do DNA, mas sendo necessário que a intensidade do circuito entre F4 e F6 permaneça como no original, uma outra forma intermediária entre F4  e F6 foi expressada. E esta outra forma é representada pela base Timina. Ao menos é esta a primeira conclusão que extraio dos modêlos.   

The unearthing of the genetic code, and the subsequent demonstration that it is common to all life (a gene from a human can be read by the translation machinery of a bacterium) is without a doubt a key piece of evidence in establishing that there was a LUCA. But what else can we find out about LUCA? Knowing that the genetic code had arisen tells us there was probably a LUCA, but gives us very little information on the nature of LUCA.

In a nutshell, the study of LUCA broadly revolves around two questions:

  • What features are common to all cellular life?
  • What sets the three domains — archaea, bacteria and eukaryotes — apart from one another?

At first sight, building a list of LUCA features might seem a fairly straightforward process, especially now that advances in technology allow all the genes possessed by an organism to be identified by sequencing its genome. A sensible approach would perhaps be to compare all the genes from representative genomes of archaea, bacteria and eukaryotes. Those genes that are common to all three domains were in the LUCA and those that aren’t must have been added later. Unfortunately, it’s not that straightforward, for two main reasons:

  • Some genes appear to have moved from organism to organism like genetic gypsies, confounding our ability to distinguish between features that are universal and date back to LUCA, and features that are universal because of genes moving about.
  • Some genes which were found in LUCA may no longer be universal. That means it may be impossible to distinguish some LUCA features from genes that arose later, say in the evolution of eukaryotes.

Ask any two researchers to give an overview of what they think the LUCA was like, and you will no doubt get different answers. With such a tricky scientific endeavour as this — working out what an organism that lived billions of years ago was like — this is hardly surprising. Some of my own views on one aspect of the LUCA question are to be found in an earlier piece posted on Actionbioscience.org which I co-wrote with Dan Jeffares [Jeffares & Poole 2000], but what follows is a broader overview of the fast-growing field of ‘LUCA biology.’

2. The minimal genome project

One hands-on approach to trying to uncover the biology of the LUCA has been to look for genes that are universal — that is, genes that all life forms possess. Once a list of these genes has been made, they also lead to another possibility: perhaps this list encapsulates the essence of cellular life — the minimum number of genes required to make a cell. In 1996, with the sequences of the first two bacterial genomes (Mycoplasma genitalium & Haemophilus influenzae) in hand, Arcady Mushegian & Eugene Koonin [Mushegian & Koonin 1996] tried exactly this. The most striking features of their minimal genome were:

  • A mere 256 genes
  • No biosynthetic machinery for making the building blocks of DNA

From this they tentatively concluded that LUCA stored its genetic information in RNA, not DNA, and made suggestions on how to further reduce the number of genes in their minimal genome. The work heralded the arrival of comparative genome studies, and there is no doubt that a good number of the genes in their 256-strong list do date back to the LUCA. However, the work was squarely criticised because of the omission of DNA [Becerra et al. 1997]. Both these bacteria are human parasites and it seems most likely that they did away with parts of the machinery for making their own DNA because they can steal from the host (i.e., the organism infected with these pathogens). Indeed, why put in the effort to make your own when it’s there for the taking?

Regardless of whether or not DNA was a part of the LUCA (I think it was [Poole et al. 2000], but there are plenty of researchers that beg to differ [e.g., Leipe et al. 1999]), this omission highlighted a wider problem with the minimal genome. Namely, the genomes you begin with probably affect the final set of genes. This is a problem for the following reasons:

  • How many genomes must be compared before we are confident we aren’t leaving anything out?
  • ‘Lifestyle’ can affect the final list (in Mushegian & Koonin’s work, the minimal gene set may in fact be a generic set required for parasitism in humans, and has little in common with what was required for a free-living cell to go about its business billions of years ago)
  • Gene losses: if a gene was in the LUCA, but now remains in only one of the three domains, this method would consistently leave it off the list of LUCA genes.
  • Finally, if genes can move from organism to organism (so-called horizontal or lateral gene transfer), certain genes may have done such a good job of spreading that they sometimes appear to date back to the time of LUCA, whereas in actual fact, they arose more recently.

Despite its limitations, the minimal genome concept is probably the best attempt to put money where mouth is and come up with a hard list of genes that may have been a feature of the LUCA. It is also the only sensible framework we currently have. That said, if gene transfer is extreme, genes will have moved about so often that this and related methods are rendered futile [Doolittle 1999].

Koonin has recently published an updated minimal gene set, using 21 complete genomes [Koonin 2000]. Surprisingly, of the 256 genes in the original set, only 81 remain, and this list is clearly insufficient to describe either the minimum number of genes required for a cell to function, or the genetic makeup of LUCA.

While working out which genes were part of LUCA is no easy task, the various attempts [Mushegian & Koonin 1996; Kyrpides et al. 1999; Hutchison et al. 1999] are a good starting point, and have served to highlight important problems that must be dealt with in the field of ‘LUCA biology.”

3. LUCA genomics

As the minimal genome work demonstrates, the major issues are:

  • How much does reliance on universal features underestimate the genetic makeup of LUCA?
  • How much gene swapping has gone on during the evolution of life from LUCA to the present?

The magic number of universal features is likely to shift about, and there have been plenty of criticisms of all the attempts to reconstruct the LUCA. Nevertheless, universal features are important because they describe a lower limit from which to build upon, and importantly, all these attempts converge on agreement insofar as concluding that LUCA was quite complex. Some of the gaps will be relatively simple to fill, but others may be close to impossible.

LUCA biologists are aware that universal features may underestimate the complexity of LUCA to some extent, but another concern is emerging that could cause even more headaches — the spectre of ‘horizontal gene transfer’ (also called lateral gene transfer):

  • If there is lots of gene swapping between organisms, the tree of life becomes more like a web, and it may not be possible to disentangle the branches.
  • If genes are extremely nomadic, truly universal features cannot be distinguished from genes that have successfully spread themselves by gene transfer.

The problem of gene transfer was made apparent in a landmark study of two bacterial genomes, Escherichia coli and Salmonella. Jeffery Lawrence & Howard Ochman [Lawrence & Ochman 1998] concluded that, since diverging from a shared ancestor 100 million years ago, at least 10% of the E. coli genome has been acquired in somewhere in excess of 200 horizontal gene transfer events.

In an equally insightful commentary, William Martin [Martin 1999] has discussed the implications of this work for our ability to reconstruct phylogenetic trees:

  • The further back in time an evolutionary divergence, the greater the likelihood that any given gene in a genome has been transferred.
  • Indeed, it may be the case that all bacterial genes have been subject to horizontal gene transfer at some point in their evolutionary history.
  • This could undermine the utility of phylogenetic tree reconstruction for deep divergences.

Currently, there is a lot of debate over whether gene transfer is so rampant that evolutionary trees cannot be built, or whether the levels of gene transfer are negligible. Both extremes are currently championed in the literature, and ironically, when it comes to the LUCA, Carl Woese’s work is central to both — many of those that view Woese’s three domains as correct have been arguing for little or insignificant levels of transfer, whereas Woese has recently suggested that very early in evolution, gene transfer between organisms was more important than inheritance from generation to generation [Woese 1998].

While it sounds like Woese is being inconsistent, his more recent claim is limited to the earliest periods in the evolution of life, and arose from concerns that LUCA was beginning to appear totipotent, a crazy notion that would have LUCA as the ultimate source for all life’s diversity:

  • A fertilised egg is totipotent — from a single cell it will develop into all the different cells and tissues that make up an adult human being.
  • If genes move between organisms, LUCA might mistakenly appear totipotent because many features would be incorrectly counted as universal.

Extrapolating Lawrence & Ochman’s result back billions of years may not be realistic. But what if horizontal transfer was the default state? This is the idea Woese has developed. His argument is that genes were so free to exchange that there were no distinct lineages — genes moved more through horizontal transfer than by vertical inheritance. As the genetic system becomes more accurate and as the complexity increases, more genes become interdependent, and transfer gives way to vertical inheritance. Woese argues that translation (and therefore the genetic code) was the first thing to be fixed or crystallised, with other cellular functions following later. From this horizontal transfer dominated system, the three domains (archaea, bacteria and eukaryotes) each emerged independently as lineages.

This is certainly food for thought, but there are several issues:

  • Gathering evidence to support it is not exactly easy since there’s no real way to establish that horizontal transfer was the initial state.
  • Koonin’s shrinking minimal gene set (Koonin 2000), shows that the minimal genome approach is not creating a totipotent LUCA. Instead, the number of genes ascribable to LUCA is becoming smaller as more genomes are added.
  • Another problem has to do with the switch from horizontal transfer to vertical inheritance. How many genes would have been able to partake in global transfers before becoming crystallised and therefore unable to transfer? Would it really have been complex enough for the ancestors of the three domains of life to have emerged independently as distinct lineages?

Gene transfer is going to be a hotly debated topic for a while, and will continue to confound the reconstruction of the LUCA. The problem is a complex one:

  • Horizontal gene transfer has been demonstrated — e.g., the spread of antibiotic resistance.
  • Limitations of the methods for building evolutionary trees can give false evidence for gene transfer.
  • Methods that don’t make use of evolutionary information are being used to examine genetic relationships and, in many cases, the data that have been used to argue for horizontal gene transfer are weak.
  • There is little consensus on the reliability of methods for detecting horizontal gene transfer.
  • What data are required to demonstrate ancient horizontal gene transfer events?
  • If natural selection is considered, most horizontal gene transfers will probably result in the gene being lost — by analogy, the organism needs a new gene like a fish needs a bicycle! For instance, antibiotic resistance genes won’t spread and be maintained by selection unless the organisms with the genes are being assaulted with the antibiotic.

This last point has been too often ignored, and there has been little attempt to establish patterns (e.g., are all genes equally nomadic?). So how should LUCA biologists deal with horizontal gene transfer?

  • If we accept that there is or has been massive unbridled horizontal gene transfer between the three domains [e.g., Doolittle 1999], we must conclude that all our tools for looking into the evolutionary past are invalidated, which means we might as well give up on the question of the LUCA. We know that there are demonstrated cases of horizontal gene transfer, but this extreme position is like throwing the baby out with the bathwater.
  • If we take as our starting point the opposite extreme, that the effect of horizontal gene transfer has been negligible, we are in a much better position — we still have our tools in place, and any suggestions of horizontal gene transfer will need to be backed up with good evidence.

There is no doubt a middle ground can be found, but amidst the furore over horizontal gene transfer, a number of researchers, making use of whole genome sequences, have reported results suggesting gene transfers have minimal effect on the ability to recover evolutionary trees [e.g., Snel et al. 1999; Sicheritz-Pontén & Andersson 2001]. These results suggest that it is possible to reconstruct the tree of life, and moreover, conclude that the 3 domain structure of the tree, as first reported by Woese and his colleagues, is supported by whole genomes.

In a timely article, Chuck Kurland has firmly criticised the eagerness of many to attribute horizontal gene transfer [Kurland 2000]. One particularly interesting aspect of his exposition is that he suggests a number of non-scientific factors that have contributed to the hype around horizontal gene transfer, and is as much a comment on how science currently operates as it is about gene transfer.

The root of the tree of life is hard to pin down [Pennisi 1999], and unbridled horizontal transfers early in the evolution of life can’t easily be distinguished from the limits of the sensitivity of our phylogenetic tools — that researchers have failed to reach a consensus on the shape of the tree does not mean that there must therefore have been horizontal transfer.

Indeed, there is another issue here — the reliability of the methods used for building evolutionary trees. Many researchers are very confident of the reliability of these methods, yet it is well known that these are based on mathematical algorithms which are convenient, but which do not necessarily accurately model real biological sequence evolution. These methods are likely to be robust for recent evolutionary events, and are definitely the most robust of the methods for detecting gene transfers. The problem is that near the root of the tree of life, they may be just too inaccurate to be useful for scrutinizing the very earliest events in evolution. In a worst-case scenario, the situation might in fact be a bit like timing the 100M sprint at the Olympics with a sundial!

David Penny, Bennet McComish and their coworkers have recently tried to address this question by investigating how far back in time the standard models used in evolutionary tree building can go before they start to go wrong. Their overall conclusion is that the models used do seem to do a little better than might be expected from theory, but that the models still do poorly for very early evolutionary events. Penny and colleagues also criticise the recent trend in reporting conflicting trees as evidence for horizontal gene transfer — given how hard it seems to accurately reconstruct the tree of life, it is hard to say whether conflicting answers are evidence for gene transfer, or just reflect the limitations of the methods for building the trees. Their testing of the models suggests that it is just not reasonable to say that there is horizontal gene transfer just because two trees made with two different genes don’t come back with the same relationships between organisms. They make the following comment, which sums up the problem very succinctly:

“… there are major difficulties between data sets for ancient divergences. It is difficult to see why researchers are so confident in their results when the relatively recent divergences within mammals, birds, or flowering plants are only now being resolved.”

This work of Penny et al. [2001] and the picture coming from evolutionary trees of whole genomes [Snel et al. 1999; Sicheritz-Pontén & Andersson 2001] seems to bolster Kurland’s provocative assertion that horizontal transfer is ‘an ideology that is begging for deconstruction.’

Nevertheless, horizontal gene transfer does occur to some extent — Lawrence & Ochman’s 1998 paper is but one of many demonstrating this. Moreover, many of the technologies biologists use for inserting genes are simply human exploitation of what has been described as natural genetic engineering. The following naturally occurring mechanisms of ‘genetic engineering’ are routinely used in molecular biology laboratories:

  • Plasmids: small, usually circular, pieces of DNA that often carry genes that enable them to move from one bacterium to another.
  • Viruses: many will naturally insert themselves into the DNA of the organism they are infecting, and can be engineered to carry extra pieces of DNA.
  • Natural or assisted DNA uptake by bacterial cells.
  • Restriction endonucleases: molecular scissors that allow precise ‘cutting’ of DNA.

We also know it is possible to identify ancient gene transfers that may have occurred as far back as 2 billion years ago. Biologists can readily identify genes in the eukaryote repertoire that have come in via the mitochondrion, a compartment in the eukaryote cell which is bacterial in origin. Indeed, the handful of genes remaining in this compartment have been shown to be bacterial in origin, as have some that have since taken up residence in the eukaryote nucleus [Lang et al. 1999].

Returning for a moment to the biology of nomadic genes, the consensus emerging from studies of bacteria is that we should indeed start thinking of bacterial (and perhaps archaeal) genomes as being an ever changing collection of genes, but only to a degree [Hacker & Carniel 2001]:

  • Genes which are central to the running of any cell — these are often referred to as housekeeping genes — make up the ‘core’ genome.
  • Genes which come and go make up the flexible genome.

The flexible genome might be a window into the nomadic gene pool of bacteria — Lan & Reeves [2000] point out that closely related strains of bacteria differ in the genes they carry by as much as 20%, and this requires we reevaluate how we categorise species of bacteria. The hope is that the flexible genome can tell us how a particular bug is currently making its living. Losing genes isn’t in itself particularly surprising for organisms that are in competition to reproduce as fast as they can [Jeffares & Poole 2000] — genes that aren’t being used aren’t kept. ‘Use it or lose it’ is the maxim of natural selection, and there are plenty of examples wherever you look in biology (our appendix and tail bone both appear to have headed in that direction for instance).

If this picture of core and flexible genomes is correct, it is good news for LUCA research because many universal features can in theory be recovered. This goes too for the ancient horizontal transfers seen with the mitochondrion. We should be optimistic that some patterns of horizontal gene transfer can be analyzed, though we still need to exercise care when looking so far back in time.

4. Fusion

When it comes to horizontal gene transfer, the hype about archaea and bacteria is arguably a case of squabbling over crumbs when compared to what seems to have happened in the early evolution of the eukaryotic cell. The now popular idea that eukaryotes emerged from a massive fusion (the ultimate gene transfer) event between a bacterium and an archaeon is also raising problems for LUCA biology.

While fusion is all about the origin of the eukaryotes, it is also about LUCA:

  • Fusion scenarios challenge Woese’s division of the living world into three domains.
  • Rather than a tree with three branches all tracing back to the LUCA, fusion has two lineages, with the eukaryotes emerging by fusion.
  • Fusion is in conflict with the emerging picture of the direct link between eukaryote biology and the RNA world.

A number of researchers have argued that the genes in the average eukaryote look to be a mixture of bacterial-like and archaeal-like. That is to say, at the genetic level, eukaryotes look to be some sort of genetic fusion between archaea and bacteria [Ribeiro & Golding 1998; Rivera et al. 1998; Horiike et al. 2001].

In understanding this, it has been helpful to divide genes into two categories: informational or operational [Rivera et al. 1998]. Informational genes are those which are involved with the copying, storing and regulation of genetic information, while operational genes are the recipes for making proteins for synthesis and breakdown of molecules in the cell, and are largely involved in energy metabolism.

Consistent with earlier research [see Gupta & Golding 1996] Rivera and colleagues found that there was rhyme and reason to the mixture of bacterial and archaeal genes in eukaryotes:

  • For informational genes — archaea and eukaryotes share more in common
  • For operational genes — bacteria and eukaryotes share more in common

Mark Ridley [2000] has suggested a good analogy for what many think has happened — a business merger. Instead of doubling up and having two departments for every aspect of the new company (Eukaryote Inc.), only one of each was kept, with the result being that the informational department came from Archaea Inc. and the ‘operational department’ from Bacteria Inc.

With the ongoing debate on how much horizontal gene transfer there is between organisms, the most exciting contribution to this picture looks not at the genes, but at gene networks. Taking a page from the study of complex networks such as the Internet, Eörs Szathmáry and colleagues [Podani et al. 2001] have recently shown that, while eukaryotic operational genes appear bacterial in origin, the structure of the metabolic network that these genes make up is in fact much much more like what is observed in archaea. In keeping with the business merger analogy, this is perhaps equivalent to keeping the management structures of Archaea Inc. in place.

This is an exciting picture, and there is no question that modern-day eukaryotes are the product of some sort of fusion [Ribeiro & Golding 1998; Horiike et al. 2001]. However, the tricky thing is working out what it all means for the origin of the eukaryotic cell. These are some of the outstanding issues:

  • Why has such a merger apparently only happened once?
  • No one has ever observed modern bacteria and archaea fusing.
  • Why is it we don’t see ‘anti-eukaryotes’ (that is, organisms which have the operational genes of archaea and the informational genes of bacteria)?
  • A number of features found exclusively in eukaryotes are tricky to explain by a fusion event.

Indeed, there are a number of ways of explaining the fusion data, and consequently, there are quite a few different opinions on how the eukaryotes came to be [Minkel 2001].

If eukaryotes are the result of a fusion between a bacterium and an archaeon, then the 3 domain picture that Carl Woese’s work supports would be wrong. Fusion would imply that everything in eukaryote biology is either a recent innovation specific to this domain, or an offshoot of the biology of archaea and bacteria. In other words, if you want to know about LUCA, archaea and bacteria are the only two domains worth looking at. This is an assumption that is often made, regardless of fusion, and a point against which some researchers, myself included, have argued [see Jeffares & Poole 2000; also Forterre & Philippe 1999; Poole et al. 1999].

To make sense of the motivation behind the many emerging fusion scenarios for the origin of the eukaryote cell and how these might impact on LUCA biology, it helps to concentrate on the big picture, rather than wading through the details of the various scenarios. Laura Katz [1998] has written a good overview of the various fusion scenarios, though several new scenarios have been published since then [e.g., Margulis, et al., 2000; Horiike et al. 2001; Bell 2001; Hartman & Fedorov 2002]. Fusion theories have developed out of the endosymbiotic theory for the origin of the mitochondrion:

  • The endosymbiotic theory was first formulated by Mereschkowsky at the beginning of the 20th century, but reintroduced and updated by Lynn Margulis in the 1970s [Martin et al. 2001].
  • This theory argues that the mitochondrion, sometimes called the powerhouse of the cell, was originally a bacterial cell that took up residence in the ancestor of modern eukaryotes.
  • Both structural and genetic similarities have shown without a shadow of a doubt that the endosymbiotic theory is correct — the DNA in the mitochondrion is more closely related to bacteria than to the DNA stored in the eukaryotic cell nucleus.
  • It is now widely accepted that this event happened once only.

Despite much agreement, there is ongoing debate surrounding the endosymbiotic theory:

1. How was this partnership founded (e.g., oxygen-based or hydrogen-based metabolism)?

2. Was the host that ultimately engulfed the bacterium a eukaryote or an archaeon?

The first question opens up a whole can of worms (which we’ll avoid here), and is a current source of intense debate [Andersson & Kurland 1999; Rotte et al. 2000]. The second question is what has the major impact on LUCA biology, but these two questions have been unnecessarily muddled. The bottom line is that the genomic & gene network data supporting fusion between an archaeon and a bacterium can as easily be made to fit a fusion between a eukaryote and a bacterium.

The state of the field is as follows:

  • Everyone agrees that the mitochondrion evolved from a bacterial ancestor (though there is current debate as to what the bacterial ancestor was like, and how it interacted with its host).
  • There is disagreement as to whether the host was a eukaryote, or an archaeon.
  • Archaea-Bacteria fusion hypotheses require all genes found only in eukaryotes to have arisen post-LUCA, post-fusion — that is, they are indirectly descended from LUCA.
  • This comes into conflict with the picture of LUCA from RNA [Jeffares & Poole 2000], and Woese’s tree of life [Woese et al. 1990] — both require that eukaryotes were directly descended from LUCA.

So how do we distinguish between an archaeal and a eukaryotic host? The key is in two parts — one is historical and the other requires careful thought about how archaea and eukaryotes might be related:

1. The historical aspect centres around understanding the shift in thinking from the original picture of an ancient eukaryote playing host to the now largely agreed-upon picture of an archaeon playing host. This shift largely revolves around the changing branches in the eukaryote evolutionary tree [Dacks 2002].

2. The relationship between archaea and eukaryotes cuts to the heart of how researchers view the evolution of cells.

Archaezoa – missing links lost 

So why is it that fusion hypotheses have become so popular? Indeed, this goes against the classical interpretation, most thoroughly espoused by Tom Cavalier-Smith [1987], who identified a disparate group of eukaryotes that appeared to him to be missing links — the so-called Archaezoa, which look like eukaryotes but lack mitochondria. His hypothesis, that the Archaezoa evolved before the introduction of mitochondria into the eukaryote lineage, held sway for many years, though has recently been dropped in favour of fusion:

  • There is growing evidence that all eukaryotes once harboured mitochondria
  • Thus, the Archaezoa have probably all lost their mitochondria, rather than never having had them [Embley & Hirt 1998].
  • For instance, one group of the Archaezoa called the microsporidia are now widely accepted to have been incorrectly placed very deep on the eukaryotic tree. Indeed, probably most of the Archaezoa, if not all, are incorrecly placed on the tree. Rather than being missing links leading back to the origin of eukaryotes, they probably arose more recently [see Dacks & Doolittle 2001; Keeling 1998; Dacks 2002].
  • If the Archaezoa aren’t a series of missing links, the origin of eukaryotes may have been concurrent with the endosymbiosis that gave rise to mitochondria.

The conclusion from the above is that all eukaryotes probably had a mitochondrion, and without the Archaezoa, the only ancestor of eukaryotes is archaea. Voilà! We have fusion.

A case of throwing the baby out with the bathwater? 

The important point to keep in mind about the picture for fusion is that it is a partial one, based largely on gene data. There are a large number of differences in the general structure of eukaryotic and prokaryotic (archaeal & bacterial) cells that aren’t explained by fusion [Poole & Penny 2001]. However, the major inconsistency is that the picture provided from trees is not the same for the relationship between archaea and eukaryotes, and that of bacteria and eukaryotes [Poole & Penny 2002, submitted]:

  • Margulis’ hypothesis is evidenced from trees. There is now overwhelming agreement that the mitochondria branch is within the bacterial tree, specifically within a subgroup called the alpha-proteobacteria [Lang et al. 1999], and a bacterial origin is also observed for chloroplasts (where photosynthesis takes place in plants and other photosynthetic eukaryotes).
  • Comparisons of relevant genes from eukaryotes and archaea should give this picture also, yet the evidence points to archaea and eukaryotes being very distinct domains.
  • This has strong parallels to the way the Archaezoa case is being treated — if there are no modern groups of archaea that appear to have split from the trunk of the tree of life before the appearance of eukaryotes, should we accept fusion? Stronger evidence was certainly required in testing the origin of the mitochondrion!
  • Another issue has to do with missing links. If the disappearance of the missing links (the Archaezoa) is used to suggest fusion, it is surely just as reasonable to argue against fusion on exactly the same grounds — there are no intermediates between eukaryotes with mitochondria and the archaea. For example, we don’t see examples of archaea with mitochondria in them, or archaea with nucleus-like structures.

With perhaps a couple of billion years separating the divergence of archaea and eukaryotes, it would be incorrect to require that the archaeon in the fusion must have been just like modern archaea. This cuts right to the heart of the problem — there is no inherent requirement that evolution leaves behind a series of intermediates for us to use to piece together the different evolutionary trajectories of archaea and eukaryotes. As with Chinese whispers, the end point may be very different from the starting phrase, but with evolution, all we have to look at is a number of different endpoints, from which we can only guess at the starting phrase!

While the specifics of the Archaezoan hypothesis are most probably wrong, it should not be thrown out completely. Explanations of eukaryote origins by fusion or via Margulis’ original scenario each suffers from the disappearance of intermediate forms, but this is expected. As Stephen Jay Gould had often said, evolution results in bushes, not ladders.

A number of researchers [Forterre & Philippe 1999; Andersson & Kurland 1999; Penny & Poole 1999] maintain that the data for fusion can be reconciled with Lynn Margulis’ endosymbiotic theory and Carl Woese’s three-domain tree. Indeed, David Penny and I have argued that fusion does the worst job of explaining the available data [Penny & Poole 1999; Poole & Penny 2001]. For instance, fusion doesn’t fit with the hypothesis that some eukaryote features, which have since been lost in archaea and bacteria, actually date back to the LUCA (see Jeffares & Poole 2000).

What it very tentatively implies is that archaea and eukaryotes may have shared a more recent ancestor than either shares with bacteria, as is often shown in textbooks, but this too is not certain, since the relationships between these three groups is also a point of controversy [see Forterre & Philippe 1999; Pennisi 1999]!

5. Conclusions

We are now entering a very exciting period in uncovering the history of the LUCA — the field has been given a major boost from a broader range of ideas being applied to the problem:

  • Acknowledging the technical challenges with building the tree of life is an important step in the right direction. So is the idea of using the RNA world period in the origin of life for establishing aspects of the nature of the LUCA (see Jeffares & Poole 2000).
  • Despite the deluge of genome data available, it is hard to say whether we will ever actually manage to get a complete list of genes which LUCA possessed. We may pick out certain characteristics, but each needs to be evaluated with extreme care. The minimal genome study of Mushegian & Koonin [1996] demonstrates this and, in its failure, it stands as a strong caveat. Most researchers have toyed with this idea, and many were probably disappointed (then later relieved) that Mushegian & Koonin beat them to it!
  • Horizontal gene transfer is likely to be a factor in confounding such efforts, but it is better to err on the side of caution with respect to how pervasive this is in the history of life. The emerging picture from genome research suggests that not all genes transfer equally easily, and that there may be an ecological underpinning to the nature of gene transfer.
  • The fusion hypothesis has important consequences for the LUCA — if correct, the LUCA must have been like bacteria and/or archaea, because those unique features of the biology of eukaryotes had not yet evolved.
  • The three domain tree that emerged from Woese’s original work permits features of all three domains to trace back to the LUCA while the fusion hypothesis, in its strictest form, does not. Unless an argument for loss of a feature in all modern archaea can be made, it is diametrically opposed to the nature of the LUCA as suggested from RNA world fossils [Jeffares & Poole 2000].

Currently, many major assumptions are being questioned:

  • Were there three domains or two, with the third arising by fusion?
  • Was LUCA prokaryote-like or eukaryote-like or even a mixture?
  • Is the genetic code the only one possible?
  • Was early evolution more reliant on horizontal gene transfer than inheritance?
  • Was there one or more LUCAs?

Each of these questions could easily fill a book, and it has become impossible to cover every aspect of LUCA biology in one article. To the casual observer, the field of LUCA biology looks to be in disarray, with everyone having their own pet theory. This can be exciting, frustrating, and, at times, bordering on the absurd, but above all it is a sign of healthy debate! Many views and varied approaches to the problem means some exciting answers to some fundamental questions about life’s origins are just around the corner…

 

 

  

Astronomia: Hidroxila em rocha desafia teoria da formação da Lua

sábado, setembro 11th, 2010

http://criacionista.blogspot.com/search/label/astronomia

A hipótese mais aceita atualmente sobre a origem da Lua propõe que nosso satélite foi criado quando a Terra primitiva foi atingida por um protoplaneta do tamanho de Marte, chamado Téia. No choque, Téia teria se vaporizado, mas não sem antes arrancar um enorme pedaço da Terra. A nuvem de partículas criada pelo impacto mais tarde teria coalescido para formar a Lua. Decorre desse modelo que essa nuvem de poeira não deveria conter elementos altamente voláteis, como hidrogênio, cloro e enxofre. No entanto, a descoberta do radical hidroxila na apatita lunar desafia essa teoria, uma vez que ela pode ter-se formado em um ambiente que continha água, um composto volátil por excelência.

“Seria surpreendente se essa água tivesse sobrevivido ao impacto, porque outros elementos menos voláteis, como o sódio e o potássio, estão fortemente ausentes. Os detalhes da teoria do grande impacto precisam ser reexaminados”, disse Yang Liu, coautor do estudo.

Nota: É interessante acompanhar os avanços científicos e como os fatos forçam o reexame e mesmo o abandono de teorias tidas como verdadeiras. Note que não existe evidência alguma da existência do tal planeta Téia. Ele aparece simplesmente por ser uma necessidade hipotética para “explicar” a “origem” da Lua. Elucubrações “científicas” como o flogístico e o éter luminífero foram usadas no passado e abandonadas depois. O que isso nos ensina? Que, quando lidamos com hipóteses e teorias, a humildade deve permear nosso discurso. Detalhe: e se, em lugar de atividade vulcânica (ainda não detectada na Lua), fosse seriamente levada em conta a teoria do grande bombardeamento?

Após a descoberta de água na Lua, em 2009, e da localização de gelo em uma cratera da Lua, em 2010, agora um grupo de pesquisadores acaba de identificar grupos hidroxila em uma rocha lunar. Os cientistas não encontraram exatamente água, ou seja, a molécula H2O, mas hidrogênio na forma de um ânion hidroxila (OH-) – algo como um parente próximo, ou um possível precursor da água. A rocha lunar examinada – contendo um mineral chamado apatita, um fosfato de cálcio – foi trazida para a Terra em 1971 por astronautas da Apolo 14.